
Convex geometry of finite exchangeable laws and de Finetti style representation with universal correlated corrections
Carlier, Guillaume; Friesecke, Gero; Vögler, Daniela (2022), Convex geometry of finite exchangeable laws and de Finetti style representation with universal correlated corrections, Probability Theory and Related Fields, p. 44. 10.1007/s00440-022-01115-2
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Probability Theory and Related FieldsPublisher
Springer
Published in
Paris
Pages
44
Publication identifier
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Friesecke, Gero
Zentrum Mathematik [Munchen] [TUM]
Vögler, Daniela
Zentrum Mathematik [Munchen] [TUM]
Abstract (EN)
We present a novel analogue for finite exchangeable sequences of the de Finetti, Hewitt and Savage theorem and investigate its implications for multi-marginal optimal transport (MMOT) and Bayesian statistics. If (Z 1 , ..., Z N) is a finitely exchangeable sequence of N random variables taking values in some Polish space X, we show that the law µ k of the first k components has a representation of the formSubjects / Keywords
N-representability; Finite exchangeability; de Finetti; Hewitt-Savage theorem; Multi-marginal optimal transport; Bayesian statistics; Extremal measures; Choquet theoryRelated items
Showing items related by title and author.
-
Lachand-Robert, Thomas; Carlier, Guillaume (2008) Article accepté pour publication ou publié
-
Fenchel-Young inequality with a remainder and applications to convex duality and optimal transport Carlier, Guillaume (2022) Document de travail / Working paper
-
Dana, Rose-Anne; Carlier, Guillaume (2006) Article accepté pour publication ou publié
-
Carlier, Guillaume; Santambrogio, Filippo; de Pascale, Luigi (2010) Article accepté pour publication ou publié
-
Carlier, Guillaume; Chernozhukov, Victor; De Bie, Gwendoline; Galichon, Alfred (2022) Article accepté pour publication ou publié