• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm

Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2019), Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm, Numerische Mathematik, 142, p. 33–54. 10.1007/s00211-018-0995-x

View/Open
euler-entropic-november.pdf (1.074Mb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Numerische Mathematik
Volume
142
Publisher
Springer
Pages
33–54
Publication identifier
10.1007/s00211-018-0995-x
Metadata
Show full item record
Author(s)
Benamou, Jean-David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nenna, Luca
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Starting from Brenier's relaxed formulation of the incompress-ible Euler equation in terms of geodesics in the group of measure-preserving diffeomorphisms, we propose a numerical method based on Sinkhorn's algorithm for the entropic regularization of optimal transport. We also make a detailed comparison of this entropic regular-ization with the so-called Bredinger entropic interpolation problem (see [1]). Numerical results in dimension one and two illustrate the feasibility of the method.
Subjects / Keywords
Generalized incompressible flows; Incompressible Euler equations; Sinkhorn algorithm; Entropic regularization; Multi-marginal optimal transport

Related items

Showing items related by title and author.

  • Thumbnail
    A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    An entropy minimization approach to second-order variational mean-field games 
    Benamou, Jean-David; Carlier, Guillaume; Marino, Simone; Nenna, Luca (2019) Article accepté pour publication ou publié
  • Thumbnail
    On the linear convergence of the multi-marginal Sinkhorn algorithm 
    Carlier, Guillaume (2021) Document de travail / Working paper
  • Thumbnail
    An augmented Lagrangian approach to Wasserstein gradient flows and applications 
    Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo