
Optimizers for the finite-rank Lieb-Thirring inequality
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021), Optimizers for the finite-rank Lieb-Thirring inequality. https://basepub.dauphine.psl.eu/handle/123456789/22572
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-03371391Date
2021Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
52
Metadata
Show full item recordAuthor(s)
Frank, Rupert L.Mathematisches Institut [München] [LMU]
Gontier, David

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The finite-rank Lieb-Thirring inequality provides an estimate on a Riesz sum of the N lowest eigenvalues of a Schr\"odinger operator −Δ−V(x) in terms of an Lp(Rd) norm of the potential V. We prove here the existence of an optimizing potential for each N, discuss its qualitative properties and the Euler--Lagrange equation (which is a system of coupled nonlinear Schr\"odinger equations) and study in detail the behavior of optimizing sequences. In particular, under the condition γ>max{0,2−d/2} on the Riesz exponent in the inequality, we prove the compactness of all the optimizing sequences up to translations. We also show that the optimal Lieb-Thirring constant cannot be stationary in N, which sheds a new light on a conjecture of Lieb-Thirring. In dimension d=1 at γ=3/2, we show that the optimizers with N negative eigenvalues are exactly the Korteweg-de Vries N--solitons and that optimizing sequences must approach the corresponding manifold. Our work covers the critical case γ=0 in dimension d≥3 (Cwikel-Lieb-Rozenblum inequality) for which we exhibit and use a link with invariants of the Yamabe problem.Subjects / Keywords
spectral theory; optimizersRelated items
Showing items related by title and author.
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Paturel, Eric; Dolbeault, Jean; Felmer, Patricio; Loss, Michael (2006) Article accepté pour publication ou publié
-
Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié