• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimizers for the finite-rank Lieb-Thirring inequality

Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021), Optimizers for the finite-rank Lieb-Thirring inequality. https://basepub.dauphine.psl.eu/handle/123456789/22572

View/Open
2109.05984.pdf (680.9Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03371391
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
52
Metadata
Show full item record
Author(s)
Frank, Rupert L.
Mathematisches Institut [München] [LMU]
Gontier, David cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The finite-rank Lieb-Thirring inequality provides an estimate on a Riesz sum of the N lowest eigenvalues of a Schr\"odinger operator −Δ−V(x) in terms of an Lp(Rd) norm of the potential V. We prove here the existence of an optimizing potential for each N, discuss its qualitative properties and the Euler--Lagrange equation (which is a system of coupled nonlinear Schr\"odinger equations) and study in detail the behavior of optimizing sequences. In particular, under the condition γ>max{0,2−d/2} on the Riesz exponent in the inequality, we prove the compactness of all the optimizing sequences up to translations. We also show that the optimal Lieb-Thirring constant cannot be stationary in N, which sheds a new light on a conjecture of Lieb-Thirring. In dimension d=1 at γ=3/2, we show that the optimizers with N negative eigenvalues are exactly the Korteweg-de Vries N--solitons and that optimizing sequences must approach the corresponding manifold. Our work covers the critical case γ=0 in dimension d≥3 (Cwikel-Lieb-Rozenblum inequality) for which we exhibit and use a link with invariants of the Yamabe problem.
Subjects / Keywords
spectral theory; optimizers

Related items

Showing items related by title and author.

  • Thumbnail
    The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions II: Application to Lieb–Thirring Inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems 
    Paturel, Eric; Dolbeault, Jean; Felmer, Patricio; Loss, Michael (2006) Article accepté pour publication ou publié
  • Thumbnail
    Lower Bound on the Hartree-Fock Energy of the Electron Gas 
    Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo