hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Bouchard, Bruno | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Vallet, Maximilien | |
dc.date.accessioned | 2022-02-11T11:23:51Z | |
dc.date.available | 2022-02-11T11:23:51Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22569 | |
dc.language.iso | en | en |
dc.subject.ddc | 519 | en |
dc.title | Itô-Dupire's formula for C^{0,1}-functionals of càdlàg weak Dirichlet processes | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We extend to càdlàg weak Dirichlet processes the C^{0,1}-functional Itô-Dupire's formula of Bouchard, Loeper and Tan (2021). In particular, we provide sufficient conditions under which a C^{0,1}-functional transformation of a special weak Dirichlet process remains a special weak Dirichlet process. As opposed to Bandini and Russo (2018) who considered the Markovian setting, our approach is not based on the approximation of the functional by smooth ones, which turns out not to be available in the pathdependent case. We simply use a small-jumps cutting argument. | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 15 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris Dauphine-PSL | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-03368703 | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.identifier.citationdate | 2021 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-02-11T11:21:27Z | |
hal.author.function | aut | |
hal.author.function | aut | |