• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Quantitative estimates for parabolic optimal control problems under L∞ and L1 constraints

Mazari, Idriss (2022), Quantitative estimates for parabolic optimal control problems under L∞ and L1 constraints, Nonlinear Analysis, 215. 10.1016/j.na.2021.112649.

View/Open
2102.05341.pdf (691.3Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Nonlinear Analysis
Volume
215
Publisher
Elsevier
Publication identifier
10.1016/j.na.2021.112649.
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this article, we present two different approaches for obtaining quantitative inequalities in the context of parabolic optimal control problems. Our model consists of a linearly controlled heat equation with Dirichlet boundary condition (uf)t−Δuf=f, f being the control. We seek to maximise the functional JT(f):=12∫(0;T)×Ωu2f or, for some ϵ>0, JϵT(f):=12∫(0;T)×Ωu2f+ϵ∫Ωu2f(T,⋅) and to obtain quantitative estimates for these maximisation problems. We offer two approaches in the case where the domain Ω is a ball. In that case, if f satisfies L1 and L∞ constraints and does not depend on time, we propose a shape derivative approach that shows that, for any competitor f=f(x) satisfying the same constraints, we have JT(f∗)−JT(f)≳∥f−f∗∥2L1(Ω), f∗ being the maximiser. Through our proof of this time-independent case, we also show how to obtain coercivity norms for shape hessians in such parabolic optimisation problems. We also consider the case where f=f(t,x) satisfies a global L∞ constraint and, for every t∈(0;T), an L1 constraint. In this case, assuming ϵ>0, we prove an estimate of the form JϵT(f∗)−JϵT(f)≳∫T0aϵ(t)∥f(t,⋅)−f∗(t,⋅)∥2L1(Ω) where aϵ(t)>0 for any t∈(0;T). The proof of this result relies on a uniform bathtub principle.
Subjects / Keywords
Shape optimisation; Optimal control; Parabolic PDEs; Quantitative inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Spatial ecology, optimal control and game theoretical fishing problems 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Some comparison results and a partial bang-bang property for two-phases problems in balls 
    Mazari, Idriss (2023) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo