• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model

Bitseki Penda, Siméon Valère; Roche, Angelina (2020), Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model, Journal of Nonparametric Statistics, 32, 3, p. 535-562. 10.1080/10485252.2020.1789125

View/Open
1706.07034.pdf (305.6Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Journal of Nonparametric Statistics
Volume
32
Number
3
Publisher
Taylor & Francis
Pages
535-562
Publication identifier
10.1080/10485252.2020.1789125
Metadata
Show full item record
Author(s)
Bitseki Penda, Siméon Valère
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Roche, Angelina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the method by simulation studies and application to real data.
Subjects / Keywords
Nonparametric kernel estimation; Goldenshluger-Lepski methodology; adaptive estimation; binary trees; bifurcating autoregressive processes

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive estimation for bifurcating Markov chains 
    Hoffmann, Marc; Olivier, Adélaïde; Valère Bitseki Penda, Siméon (2017) Article accepté pour publication ou publié
  • Thumbnail
    Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models 
    Valère Bitseki Penda, Siméon; Olivier, Adélaïde (2017) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive nonparametric estimation of a component density in a two-class mixture model 
    Chagny, Gaëlle; Channarond, Antoine; Hoang, Van Ha; Roche, Angelina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Variable selection and estimation in multivariate functional linear regression via the Lasso 
    Roche, Angelina (2018) Document de travail / Working paper
  • Thumbnail
    Adaptive nonparametric estimation in the functional linear model with functional output 
    Chagny, Gaëlle; Meynaoui, Anouar; Roche, Angelina (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo