
On the solution of a Riesz equilibrium problem and integral identities for special functions
Chafai, Djalil; Saff, Edward B.; Womersley, Robert S. (2021), On the solution of a Riesz equilibrium problem and integral identities for special functions. https://basepub.dauphine.psl.eu/handle/123456789/22354
Voir/Ouvrir
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-03312868Date
2021Titre de la collection
Cahier de recherche du CEREMADEPages
21
Métadonnées
Afficher la notice complèteAuteur(s)
Chafai, Djalil
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Saff, Edward B.
Center for Constructive Approximation [Vanderbilt]
Womersley, Robert S.
School of Mathematics and Statistics [Sydney] [UNSW]
Résumé (EN)
The aim of this note is to provide a quadratic external field extension of a classical result of Marcel Riesz for the equilibrium measure on a ball with respect to Riesz s-kernels, including the logarithmic kernel, in arbitrary dimensions. The equilibrium measure is a radial arcsine distribution. As a corollary, we obtain new integral identities involving special functions such as elliptic integrals and more generally hypergeometric functions. These identities are not found in the existing tables for series and integrals, and are not recognized by advanced mathematical software. Among other ingredients, our proofs involve the Euler-Lagrange variational characterization, the Funk-Hecke formula, and the Weyl lemma for the regularity of elliptic equations.Publications associées
Affichage des éléments liés par titre et auteur.
-
Chafai, Djalil; Saff, Edward B.; Womersley, Robert S. (2022) Article accepté pour publication ou publié
-
Chafai, Djalil; Saff, Edward B.; Womersley, Robert S. (2022) Document de travail / Working paper
-
Chafai, Djalil; Dadoun, Benjamin; Youssef, Pierre (2022) Document de travail / Working paper
-
Chafaï, Djalil; Lehec, Joseph (2018) Document de travail / Working paper
-
Bonnefont, Michel; Chafaï, Djalil; Herry, Ronan (2020) Article accepté pour publication ou publié