• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Convergence of the spectral radius of a random matrix through its characteristic polynomial

Bordenave, Charles; Chafaï, Djalil; García-Zelada, David (2021), Convergence of the spectral radius of a random matrix through its characteristic polynomial, Probability Theory and Related Fields, p. 1-12. 10.1007/s00440-021-01079-9

View/Open
2012.05602.pdf (306.1Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-03053734
Date
2021
Journal name
Probability Theory and Related Fields
Publisher
Springer
Pages
1-12
Publication identifier
10.1007/s00440-021-01079-9
Metadata
Show full item record
Author(s)
Bordenave, Charles
Institut de Mathématiques de Marseille [I2M]
Chafaï, Djalil cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
García-Zelada, David
Institut de Mathématiques de Marseille [I2M]
Abstract (EN)
Consider a square random matrix with independent and identically distributed entries of mean zero and unit variance. We show that as the dimension tends to infinity, the spectral radius is equivalent to the square root of the dimension in probability. This result can also be seen as the convergence of the support in the circular law theorem under optimal moment conditions. In the proof we establish the convergence in law of the reciprocal characteristic polynomial to a random analytic function outside the unit disc, related to a hyperbolic Gaussian analytic function. The proof is short and differs from the usual approaches for the spectral radius. It relies on a tightness argument and a joint central limit phenomenon for traces of fixed powers.
Subjects / Keywords
Random matrix; Spectral radius; Gaussian analytic function; Central limit theorem; Combinatorics; Digraph; Circular law

Related items

Showing items related by title and author.

  • Thumbnail
    On the spectral radius of a random matrix: An upper bound without fourth moment 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Tikhomirov, Konstantin (2018) Article accepté pour publication ou publié
  • Thumbnail
    At the edge of a one-dimensional jellium 
    Chafaï, Djalil; García-Zelada, David; Jung, Paul (2020) Document de travail / Working paper
  • Thumbnail
    Macroscopic and edge behavior of a planar jellium 
    Chafaï, Djalil; García-Zelada, David; Jung, Paul (2020) Article accepté pour publication ou publié
  • Thumbnail
    Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Piras, Daniele (2017) Article accepté pour publication ou publié
  • Thumbnail
    Spectrum of Markov generators on sparse random graphs 
    Chafaï, Djalil; Caputo, Pietro; Bordenave, Charles (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo