Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorGontier, David
HAL ID: 11393
ORCID: 0000-0001-8648-7910
hal.structure.identifierEcole Nationale Supérieure d'Electricité et de Mécanique [Casablanca] [ENSEM]
dc.contributor.authorLahbabi, Salma
hal.structure.identifier
dc.contributor.authorMaichine, Abdallah
dc.date.accessioned2021-12-10T09:46:44Z
dc.date.available2021-12-10T09:46:44Z
dc.date.issued2021
dc.identifier.issn0010-3616
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22350
dc.language.isoenen
dc.subject.ddc520en
dc.titleDensity Functional Theory for two-dimensional homogeneous materialsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study Density Functional Theory models for systems which are translationally invariant in some directions, such as a homogeneous 2-d slab in the 3-d space. We show how the different terms of the energy are modified and we derive reduced equations in the remaining directions. In the Thomas–Fermi model, we prove that there is perfect screening, and provide decay estimates for the electronic density away from the slab. In Kohn–Sham models, we prove that the Pauli principle is replaced by a penalization term in the energy. In the reduced Hartree–Fock model in particular, we prove that the resulting model is well-posed, and give some properties of the minimizer.en
dc.relation.isversionofjnlnameCommunications in Mathematical Physics
dc.relation.isversionofjnlvol388en
dc.relation.isversionofjnldate2021-11
dc.relation.isversionofjnlpages1475–1505en
dc.relation.isversionofdoi10.1007/s00220-021-04240-6en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2021-12-09T10:44:02Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record