Coulomb gases under constraint: some theoretical and numerical results
Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2021), Coulomb gases under constraint: some theoretical and numerical results, SIAM Journal on Mathematical Analysis, 53, 1, p. 181-220. 10.1137/19M1296859
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
SIAM Journal on Mathematical AnalysisVolume
53Number
1Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
181-220
Publication identifier
Metadata
Show full item recordAuthor(s)
Chafaï, Djalil
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Ferré, Grégoire
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Stoltz, Gabriel
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Abstract (EN)
We consider Coulomb gas models for which the empirical measure typically concentrates, when the number of particles becomes large, on an equilibrium measure minimizing an electrostatic energy. We study the behavior when the gas is conditioned on a rare event. We first show that the special case of quadratic confinement and linear constraint is exactly solvable due to a remarkable factorization, and that the conditioning has then the simple effect of shifting the cloud of particles without deformation. To address more general cases, we perform a theoretical asymptotic analysis relying on a large deviations technique known as the Gibbs conditioning principle. The technical part amounts to establishing that the conditioning ensemble is an $I$-continuity set of the energy. This leads to characterizing the conditioned equilibrium measure as the solution of a modified variational problem. For simplicity, we focus on linear statistics and on quadratic statistics constraints. Finally, we numerically illustrate our predictions and explore cases in which no explicit solution is known. For this, we use a generalized hybrid Monte Carlo algorithm for sampling from the conditioned distribution for a finite but large system.Subjects / Keywords
Constrained dynamics; Coulomb gases; Random matrices; Large deviations; Conditioning; Gibbs principle; Numerical simulationRelated items
Showing items related by title and author.
-
Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2019-07) Document de travail / Working paper
-
Chafaï, Djalil; Ferré, Gregoire (2019) Article accepté pour publication ou publié
-
Chafaï, Djalil; Hardy, Adrien; Maïda, Mylène (2018) Article accepté pour publication ou publié
-
Péché, Sandrine; Chafaï, Djalil (2014) Article accepté pour publication ou publié
-
Bolley, François; Chafaï, Djalil; Fontbona, Joaquín (2018) Article accepté pour publication ou publié