
The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021), The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States, Archive for Rational Mechanics and Analysis, 240, p. 1203–1254. 10.1007/s00205-021-01634-7
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Archive for Rational Mechanics and AnalysisVolume
240Publisher
Springer
Pages
1203–1254
Publication identifier
Metadata
Show full item recordAuthor(s)
Gontier, David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nazar, Faizan Q.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the nonlinear Schrödinger equation for systems of N orthonormal functions. We prove the existence of ground states for all N when the exponent p of the non linearity is not too large, and for an infinite sequence Nj tending to infinity in the whole range of possible p’s, in dimensions d≥1. This allows us to prove that translational symmetry is broken for a quantum crystal in the Kohn–Sham model with a large Dirac exchange constant.Subjects / Keywords
nonlinear Schrödinger equationRelated items
Showing items related by title and author.
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
-
Gravejat, Philippe; Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
-
Berestycki, Henri; Lions, Pierre-Louis (1983) Article accepté pour publication ou publié