• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Monotone convex order for the McKean-Vlasov processes

Liu, Yating; Pagès, Gilles (2022), Monotone convex order for the McKean-Vlasov processes, Stochastic Processes and their Applications, 152, p. 312-338. 10.1016/j.spa.2022.06.003

View/Open
2104.10421.pdf (356.5Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Stochastic Processes and their Applications
Volume
152
Publisher
Elsevier
Published in
Paris
Pages
312-338
Publication identifier
10.1016/j.spa.2022.06.003
Metadata
Show full item record
Author(s)
Liu, Yating
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pagès, Gilles
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Abstract (EN)
In this paper, we establish the monotone convex order between two R-valued McKean-Vlasov processes X=(Xt)t∈[0,T] and Y=(Yt)t∈[0,T] defined on a filtered probability space (Ω,F,(Ft)t≥0,P) bydXt=b(t,Xt,μt)dt+σ(t,Xt,μt)dBt,X0∈Lp(P)withp≥2,dYt=β(t,Yt,νt)dt+θ(t,Yt,νt)dBt,Y0∈Lp(P),where ∀t∈[0,T],μt=P∘X−1t,νt=P∘Y−1t. If we make the convexity and monotony assumption (only) on b and |σ| and if b≤β and |σ|≤|θ|, then the monotone convex order for the initial random variable X0⪯mcvY0 can be propagated to the whole path of processes X and Y. That is, if we consider a non-decreasing convex functional F defined on the path space with polynomial growth, we have EF(X)≤EF(Y); for a non-decreasing convex functional G defined on the product space involving the path space and its marginal distribution space, we have EG(X,(μt)t∈[0,T])≤EG(Y,(νt)t∈[0,T]) under appropriate conditions. The symmetric setting is also valid, that is, if Y0⪯mcvX0 and |θ|≤|σ|, then EF(Y)≤EF(X) and EG(Y,(νt)t∈[0,T])≤EG(X,(μt)t∈[0,T]). The proof is based on several forward and backward dynamic programming principle and the convergence of the truncated Euler scheme of the McKean-Vlasov equation.
Subjects / Keywords
Convex order; Monotone convex order; McKean-Vlasov process; Truncated Eulerscheme

Related items

Showing items related by title and author.

  • Thumbnail
    Functional convex order for the scaled McKean-Vlasov processes 
    Liu, Yating; Pagès, Gilles (2022) Document de travail / Working paper
  • Thumbnail
    Particle method and quantization-based schemes for the simulation of the McKean-Vlasov equation 
    LIU, Yating (2022) Document de travail / Working paper
  • Thumbnail
    Path-dependent McKean-Vlasov equation: strong well-posedness and convergence of an interpolated Euler scheme 
    Bernou, Armand; Liu, Yating (2022) Document de travail / Working paper
  • Thumbnail
    Some results on the McKean–Vlasov optimal control and mean field games : Limit theorems, dynamic programming principle and numerical approximations 
    Djete, Fabrice (2020-12-16) Thèse
  • Thumbnail
    The LAN property for McKean-Vlasov models in a mean-field regime 
    Della Maestra, Laëtitia; Hoffmann, Marc (2023) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo