• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications

Lewin, Mathieu; Rota Nodari, Simona (2020), The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications, Calculus of Variations and Partial Differential Equations, 59, 197, p. 1-53. 10.1007/s00526-020-01863-w

View/Open
2006.02809.pdf (595.9Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Calculus of Variations and Partial Differential Equations
Volume
59
Number
197
Publisher
Springer
Pages
1-53
Publication identifier
10.1007/s00526-020-01863-w
Metadata
Show full item record
Author(s)
Lewin, Mathieu cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Rota Nodari, Simona cc
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Abstract (EN)
In this paper we first prove a general result about the uniqueness and non-degeneracy of positive radial solutions to equations of the form Δu+g(u)=0. Our result applies in particular to the double power non-linearity where g(u)=uq−up−μu for p>q>1 and μ>0, which we discuss with more details. In this case, the non-degeneracy of the unique solution uμ allows us to derive its behavior in the two limits μ→0 and μ→μ∗ where μ∗ is the threshold of existence. This gives the uniqueness of energy minimizers at fixed mass in certain regimes. We also make a conjecture about the variations of the L2 mass of uμ in terms of μ, which we illustrate with numerical simulations. If valid, this conjecture would imply the uniqueness of energy minimizers in all cases and also give some important information about the orbital stability of uμ.

Related items

Showing items related by title and author.

  • Thumbnail
    The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions II: Application to Lieb–Thirring Inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
  • Thumbnail
    Spectral Pollution and How to Avoid It (With Applications to Dirac and Periodic Schrödinger Operators) 
    Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo