• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions

Carrillo, José A.; Delgadino, Matias G.; Frank, Rupert L.; Lewin, Mathieu (2022), Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions, Mathematical Models and Methods in Applied Sciences (M3AS), 32, 4, p. 831-850. 10.1142/S021820252250018X

View/Open
2012.08586.pdf (290.7Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Mathematical Models and Methods in Applied Sciences (M3AS)
Volume
32
Number
4
Publisher
World Scientific
Pages
831-850
Publication identifier
10.1142/S021820252250018X
Metadata
Show full item record
Author(s)
Carrillo, José A.
Mathematical Institute [Oxford] [MI]
Delgadino, Matias G.
Californian Institute of Technology [Caltech]
Pontifícia Universidade Católica do Rio de Janeiro [PUC-Rio]
Frank, Rupert L.
Mathematisches Institut [München] [LMU]
Lewin, Mathieu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We show that partial mass concentration can happen for stationary solutions of aggregation–diffusion equations with homogeneous attractive kernels in the fast diffusion range. More precisely, we prove that the free energy admits a radial global minimizer in the set of probability measures which may have part of its mass concentrated in a Dirac delta at a given point. In the case of the quartic interaction potential, we find the exact range of the diffusion exponent where concentration occurs in space dimensions N≥6. We then provide numerical computations which suggest the occurrence of mass concentration in all dimensions N≥3, for homogeneous interaction potentials with higher power.
Subjects / Keywords
Keller–Segel; aggregation–diffusion; mass concentration

Related items

Showing items related by title and author.

  • Thumbnail
    Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability 
    Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015) Article accepté pour publication ou publié
  • Thumbnail
    Reverse Hardy-Littlewood-Sobolev inequalities 
    Carillo, José A.; Delgadino, Matías; Dolbeault, Jean; Frank, Rupert L.; Hoffmann, Franca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Thumbnail
    Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis 
    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Thumbnail
    Optimal critical mass in the two dimensional Keller–Segel model in R2 
    Dolbeault, Jean; Perthame, Benoît (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo