• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions

Carillo, José A.; Delgadino, Matias G.; Frank, Rupert L.; Lewin, Mathieu (2020), Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions. https://basepub.dauphine.psl.eu/handle/123456789/22332

View/Open
2012.08586.pdf (290.7Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03079032
Date
2020
Series title
Cahier de recherche du CEREMADE
Pages
25
Metadata
Show full item record
Author(s)
Carillo, José A.
Mathematical Institute [Oxford] [MI]
Delgadino, Matias G.
Californian Institute of Technology [Caltech]
Pontifícia Universidade Católica do Rio de Janeiro [PUC-Rio]
Frank, Rupert L.
Mathematisches Institut [München] [LMU]
Lewin, Mathieu cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We show that partial mass concentration can happen for stationary solutions of aggregation-diffusion equations with homogeneous attractive kernels in the fast diffusion range. More precisely, we prove that the free energy admits a radial global minimizer in the set of probability measures which may have part of its mass concentrated in a Dirac delta at a given point. In the case of the quartic interaction potential, we find the exact range of the diffusion exponent where concentration occurs in space dimensions N≥6. We then provide numerical computations which suggest the occurrence of mass concentration in all dimensions N≥3, for homogeneous interaction potentials with higher power.

Related items

Showing items related by title and author.

  • Thumbnail
    Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability 
    Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015) Article accepté pour publication ou publié
  • Thumbnail
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Thumbnail
    Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis 
    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Thumbnail
    Optimal critical mass in the two dimensional Keller–Segel model in R2 
    Dolbeault, Jean; Perthame, Benoît (2004) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo