
Classical field theory limit of many-body quantum Gibbs states in 2D and 3D
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2021), Classical field theory limit of many-body quantum Gibbs states in 2D and 3D, Inventiones Mathematicae, 224, p. 315–444. 10.1007/s00222-020-01010-4
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Inventiones MathematicaeVolume
224Publisher
Springer
Pages
315–444
Publication identifier
Metadata
Show full item recordAuthor(s)
Lewin, Mathieu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nam, Phan Thành
Mathematisches Institut [München] [LMU]
Rougerie, Nicolas
Laboratoire de physique et modélisation des milieux condensés [LPM2C ]
Abstract (EN)
We provide a rigorous derivation of nonlinear Gibbs measures in two and three space dimensions, starting from many-body quantum systems in thermal equilibrium. More precisely, we prove that the grand-canonical Gibbs state of a large bosonic quantum system converges to the Gibbs measure of a nonlinear Schrödinger-type classical field theory, in terms of partition functions and reduced density matrices. The Gibbs measure thus describes the behavior of the infinite Bose gas at criticality, that is, close to the phase transition to a Bose–Einstein condensate. The Gibbs measure is concentrated on singular distributions and has to be appropriately renormalized, while the quantum system is well defined without any renormalization. By tuning a single real parameter (the chemical potential), we obtain a counter-term for the diverging repulsive interactions which provides the desired Wick renormalization of the limit classical theory. The proof relies on a new estimate on the entropy relative to quasi-free states and a novel method to control quantum variances.Related items
Showing items related by title and author.
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2019-06) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018) Document de travail / Working paper
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Communication / Conférence