Mixing time of the adjacent walk on the simplex
hal.structure.identifier | Dipartimento di Matematica [Roma TRE] | |
dc.contributor.author | Caputo, Pietro | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Labbé, Cyril
HAL ID: 9675 | |
hal.structure.identifier | Instituto Nacional de Matemática Pura e Aplicada [IMPA] | |
dc.contributor.author | Lacoin, Hubert | |
dc.date.accessioned | 2021-12-07T09:03:32Z | |
dc.date.available | 2021-12-07T09:03:32Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 2168-894X | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22328 | |
dc.language.iso | en | en |
dc.subject | adjacent walk | en |
dc.subject | Cutoff | en |
dc.subject | mixing time | en |
dc.subject | spectral gap | en |
dc.subject.ddc | 519 | en |
dc.title | Mixing time of the adjacent walk on the simplex | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | By viewing the N-simplex as the set of positions of N−1 ordered particles on the unit interval, the adjacent walk is the continuous-time Markov chain obtained by updating independently at rate 1 the position of each particle with a sample from the uniform distribution over the interval given by the two particles adjacent to it. We determine its spectral gap and prove that both the total variation distance and the separation distance to the uniform distribution exhibit a cutoff phenomenon, with mixing times that differ by a factor 2. The results are extended to the family of log-concave distributions obtained by replacing the uniform sampling by a symmetric log-concave Beta distribution | en |
dc.relation.isversionofjnlname | Annals of Probability | |
dc.relation.isversionofjnlvol | 48 | en |
dc.relation.isversionofjnlissue | 5 | en |
dc.relation.isversionofjnldate | 2020-09 | |
dc.relation.isversionofjnlpages | 2449-2493 | en |
dc.relation.isversionofdoi | 10.1214/20-AOP1428 | en |
dc.relation.isversionofjnlpublisher | Institute of Mathematical Statistics | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2021-12-07T09:00:11Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |