• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Mixing time of the adjacent walk on the simplex

Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020), Mixing time of the adjacent walk on the simplex, Annals of Probability, 48, 5, p. 2449-2493. 10.1214/20-AOP1428

View/Open
1904.01088.pdf (451.0Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Annals of Probability
Volume
48
Number
5
Publisher
Institute of Mathematical Statistics
Pages
2449-2493
Publication identifier
10.1214/20-AOP1428
Metadata
Show full item record
Author(s)
Caputo, Pietro
Dipartimento di Matematica [Roma TRE]
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lacoin, Hubert
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Abstract (EN)
By viewing the N-simplex as the set of positions of N−1 ordered particles on the unit interval, the adjacent walk is the continuous-time Markov chain obtained by updating independently at rate 1 the position of each particle with a sample from the uniform distribution over the interval given by the two particles adjacent to it. We determine its spectral gap and prove that both the total variation distance and the separation distance to the uniform distribution exhibit a cutoff phenomenon, with mixing times that differ by a factor 2. The results are extended to the family of log-concave distributions obtained by replacing the uniform sampling by a symmetric log-concave Beta distribution
Subjects / Keywords
adjacent walk; Cutoff; mixing time; spectral gap

Related items

Showing items related by title and author.

  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
  • Thumbnail
    Mixing time and cutoff for the weakly asymmetric simple exclusion process 
    Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
  • Thumbnail
    Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion 
    Lacoin, Hubert (2016) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic limit and cutoff for the biased adjacent walk on the simplex 
    Labbé, Cyril; Petit, Enguerand (2022) Document de travail / Working paper
  • Thumbnail
    Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling 
    Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo