
On the analogy between real reductive groups and Cartan motion groups : The Mackey-Higson bijection
Afgoustidis, Alexandre (2021), On the analogy between real reductive groups and Cartan motion groups : The Mackey-Higson bijection, Cambridge Journal of Mathematics, 9, 3, p. 551–575. 10.4310/CJM.2021.v9.n3.a1
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Cambridge Journal of MathematicsVolume
9Number
3Pages
551–575
Publication identifier
Metadata
Show full item recordAuthor(s)
Afgoustidis, AlexandreCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut Élie Cartan de Lorraine [IECL]
Abstract (EN)
George Mackey suggested in 1975 that there should be analogies between the irreducible unitary representations of a noncompact reductive Lie group G and those of its Cartan motion group G0 − the semidirect product of a maximal compact subgroup of G and a vector space. He conjectured the existence of a natural one-to-one correspondence between "most" irreducible (tempered) representations of G and "most" irreducible (unitary) representations of G0. We here describe a simple and natural bijection between the tempered duals of both groups, and an extension to a one-to-one correspondence between the admissible duals.Subjects / Keywords
Representations of semisimple Lie groups; Lie group contractions; Mackey analogy; Tempered dualRelated items
Showing items related by title and author.
-
Afgoustidis, Alexandre (2019) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre (2020) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre (2016) Document de travail / Working paper
-
Afgoustidis, Alexandre (2015) Document de travail / Working paper
-
Afgoustidis, Alexandre (2015) Document de travail / Working paper