• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Versatile black-box optimization

Liu, Jialin; Moreau, Antoine; Preuss, Mike; Rapin, Jeremy; Roziere, Baptiste; Teytaud, Fabien; Teytaud, O. (2020), Versatile black-box optimization, GECCO '20: Genetic and Evolutionary Computation Conference, 2020-07, Cancún, Mexico

View/Open
Versatile_black-box.pdf (1.212Mb)
Type
Communication / Conférence
Date
2020
Conference title
GECCO '20: Genetic and Evolutionary Computation Conference
Conference date
2020-07
Conference city
Cancún
Conference country
Mexico
Publisher
ACM - Association for Computing Machinery
Published in
New York, NY
ISBN
978-1-4503-7128-5
Pages
620–628
Publication identifier
10.1145/3377930.3389838
Metadata
Show full item record
Author(s)
Liu, Jialin
Moreau, Antoine
Preuss, Mike
Rapin, Jeremy
Roziere, Baptiste
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Teytaud, Fabien
Teytaud, O.
Abstract (EN)
Choosing automatically the right algorithm using problem descriptors is a classical component of combinatorial optimization. It is also a good tool for making evolutionary algorithms fast, robust and versatile. We present Shiwa, an algorithm good at both discrete and continuous, noisy and noise-free, sequential and parallel, black-box optimization. Our algorithm is experimentally compared to competitors on YABBOB, a BBOB comparable testbed, and on some variants of it, and then validated on several real world testbeds.
Subjects / Keywords
Black-box optimization; portfolio algorithm; gradient-free algorithms; open source platfor

Related items

Showing items related by title and author.

  • Thumbnail
    Learning opening books in partially observable games: using random seeds in Phantom Go 
    Cazenave, Tristan; Liu, Jialin; Teytaud, Fabien; Teytaud, Olivier (2016) Communication / Conférence
  • Thumbnail
    Local Optimization of Black-Box Function with High or Infinite-Dimensional Inputs 
    Roche, Angelina (2018) Article accepté pour publication ou publié
  • Thumbnail
    Polygames: Improved Zero Learning 
    Cazenave, Tristan; Chen, Yen-Chi; Chen, Guan-Wei; Chen, Shi-Yu; Chiu, Xian-Dong; Dehos, Julien; Gong, Qucheng; Hu, Hengyuan; Khalidov, Vasil Khalidov; Li, Cheng-Ling; Lin, Hsin-I; Lin, Yu-Jin; Martinet, Xavier; Mella, Vegard; Rapin, J.; Roziere, B.; Synnaeve, G.; Teytaud, F.; Teytaud, O.; Ye, Shi-Cheng; Ye, Yi-Jun; Yen, Shi-Jim; Zagoruyko, Sergey (2020) Article accepté pour publication ou publié
  • Thumbnail
    The Rectangular Seeds of Domineering, Atari-Go and Breakthrough 
    Cazenave, Tristan; Liu, Jialin; Teytaud, Olivier (2015) Communication / Conférence
  • Thumbnail
    Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows 
    Cazenave, Tristan; Teytaud, Fabien; Rimmel, Arpad (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo