• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

BCMA-ES: a conjugate prior Bayesian optimization view

Benhamou, Éric; Saltiel, David; Laraki, Rida; Atif, Jamal (2020), BCMA-ES: a conjugate prior Bayesian optimization view. https://basepub.dauphine.psl.eu/handle/123456789/22299

View/Open
BCMA-ES_conjugate.pdf (961.4Kb)
Type
Document de travail / Working paper
Date
2020
Series title
Preprint Lamsade
Published in
Paris
Metadata
Show full item record
Author(s)
Benhamou, Éric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Saltiel, David
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Laraki, Rida cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
CMA-ES is one of the state of the art evolutionary optimization methods because of its capacity to adapt covariance to information geometry. It uses prior information to form a best guess about the distribution of the minimum. We show this can be reformulated as a Bayesian optimization problem for the sampling of the optimum. Thanks to Normal Inverse Wishart (NIW) distribution, that is a conjugate prior for the multi variate normal distribution, we can derive a numerically efficient algorithm Bayesian CMA-ES that obtains similar performance as the traditional CMA-ES on multiple benchmarks and provides a new justification for the CMA-ES updates equations. This novel paradigm for Bayesian CMA-ES provides a powerful bridge between evolutionary and Bayesian optimization, showing the profound similarities and connections between these traditionally opposed methods and opening horizon for variations and mix strategies on these methods.
Subjects / Keywords
CMA-ES; Bayesian optimization; Normal inverse Wishart; conjugate prior

Related items

Showing items related by title and author.

  • Thumbnail
    NGO-GM: Natural Gradient Optimization for Graphical Models 
    Benhamou, Éric; Atif, Jamal; Laraki, Rida; Saltiel, David (2020) Document de travail / Working paper
  • Thumbnail
    Deep Reinforcement Learning (DRL) for portfolio allocation 
    Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
  • Thumbnail
    Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA) 
    Saltiel, David; Benhamou, Eric; Laraki, Rida; Atif, Jamal (2021) Communication / Conférence
  • Thumbnail
    A new approach to learning in Dynamic Bayesian Networks (DBNs) 
    Benhamou, Eric; Atif, Jamal; Laraki, Rida (2018) Document de travail / Working paper
  • Thumbnail
    BCMA-ES: A Bayesian approach to CMA-ES 
    Benhamou, Éric; Saltiel, David; Verel, Sébastien; Teytaud, Fabien (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo