• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Short dated smile under Rough Volatility: asymptotics and numerics

Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021), Short dated smile under Rough Volatility: asymptotics and numerics. https://basepub.dauphine.psl.eu/handle/123456789/22295

View/Open
2009.08814.pdf (340.5Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03099744
Date
2021
Series title
Cahier de recherche du CEREMADE
Pages
23
Metadata
Show full item record
Author(s)
Friz, Peter K.
Weierstraß-Institut für Angewandte Analysis und Stochastik = Weierstrass Institute for Applied Analysis and Stochastics [Berlin] [WIAS]
Gassiat, Paul
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pigato, Paolo
Weierstraß-Institut für Angewandte Analysis und Stochastik = Weierstrass Institute for Applied Analysis and Stochastics [Berlin] [WIAS]
Abstract (EN)
In [Precise Asymptotics for Robust Stochastic Volatility Models; Ann. Appl. Probab. 2020] we introduce a new methodology to analyze large classes of (classical and rough) stochastic volatility models, with special regard to short-time and small noise formulae for option prices, using the framework [Bayer et al; A regularity structure for rough volatility; Math. Fin. 2020]. We investigate here the fine structure of this expansion in large deviations and moderate deviations regimes, together with consequences for implied volatility. We discuss computational aspects relevant for the practical application of these formulas. We specialize such expansions to prototypical rough volatility examples and discuss numerical evidence.

Related items

Showing items related by title and author.

  • Thumbnail
    Precise asymptotics: robust stochastic volatility models 
    Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021) Article accepté pour publication ou publié
  • Thumbnail
    A regularity structure for rough volatility 
    Bayer, Christian; Friz, Peter; Gassiat, Paul; Martin, Jorg; Stemper, Benjamin (2020) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic control with rough paths 
    Diehl, Joscha; Friz, Peter K.; Gassiat, Paul (2017) Article accepté pour publication ou publié
  • Thumbnail
    Eikonal equations and pathwise solutions to fully non-linear SPDEs 
    Friz, Peter K.; Gassiat, Paul; Lions, Pierre-Louis; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Malliavin calculus for regularity structures: The case of gPAM 
    Cannizzaro, G.; Friz, Peter K.; Gassiat, Paul (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo