Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators
dc.contributor.author | Chevallier, Sylvain | |
dc.contributor.author | Corsi, Marie-Constance
HAL ID: 21742 | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Yger, Florian | |
dc.contributor.author | Noûs, Camille | |
dc.date.accessioned | 2021-11-29T14:41:45Z | |
dc.date.available | 2021-11-29T14:41:45Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22291 | |
dc.language.iso | en | en |
dc.subject | Brain-Computer | en |
dc.subject.ddc | 004 | en |
dc.title | Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | This abstract describes a novel approach for handling brain-computer interfaces (BCI), that could be used for robotic applications. State-of-the-art approaches rely on the classification of covariance matrices in the manifold of symmetric positive-definite matrices. Functional connectivity estimators have demonstrated their reliability and are good candidates to improve the classification accuracy of covariance-based methods. This abstract explores possible application of functional connectivity in Riemannian BCI. | en |
dc.subject.ddclabel | Informatique générale | en |
dc.relation.conftitle | IROS Workshop on Bringing geometric methods to robot learning, optimization and control | en |
dc.relation.confdate | 2020-10 | |
dc.relation.confcity | Las Vegas, NV / Virtual | en |
dc.relation.confcountry | United States | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2021-11-29T14:36:53Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |