• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Uniform Deconvolution for Poisson Point Processes

Bonnet, Anna; Lacour, Claire; Picard, Franck; Rivoirard, Vincent (2020), Uniform Deconvolution for Poisson Point Processes. https://basepub.dauphine.psl.eu/handle/123456789/22282

View/Open
163819258882984.pdf (462.3Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02964117
Date
2020
Series title
Cahier de recherche du CEREMADE
Pages
32
Metadata
Show full item record
Author(s)
Bonnet, Anna
Laboratoire de Probabilités, Statistiques et Modélisations [LPSM (UMR_8001)]
Lacour, Claire
Laboratoire Analyse et Mathématiques Appliquées [LAMA]
Picard, Franck
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 [LBBE]
Rivoirard, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Pois-son processes, we propose an optimal data-driven selection of the kernel's bandwidth, and we provide a heuristic framework to calibrate the estimator in practice. Our method is illustrated on the spatial repartition of replication origins along the human genome.
Subjects / Keywords
Convolution; Poisson process; Adaptive estimation

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive Lasso and group-Lasso for functional Poisson regression 
    Ivanoff, Stéphane; Picard, F.; Rivoirard, Vincent (2016) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation 
    Nguyen, Minh-Lien; Lacour, Claire; Rivoirard, Vincent (2019) Rapport
  • Thumbnail
    Numerical performance of Penalized Comparison to Overfitting for multivariate kernel density estimation 
    Varet, Suzanne; Lacour, Claire; Massart, Pascal; Rivoirard, Vincent (2019) Document de travail / Working paper
  • Thumbnail
    Lasso and probabilistic inequalities for multivariate point processes 
    Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2015) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive pointwise estimation of conditional density function 
    Bertin, Karine; Lacour, Claire; Rivoirard, Vincent (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo