
Minimizing movements for forced anisotropic mean curvature flow of partitions with mobilities
Bellettini, Giovanni; Chambolle, Antonin; Kholmatov, Shokhrukh (2021), Minimizing movements for forced anisotropic mean curvature flow of partitions with mobilities, Proceedings of the Royal Society of Edinburgh. Section A, Mathematical and Physical Sciences, 151, 4, p. 1135-1170. 10.1017/prm.2020.53
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Proceedings of the Royal Society of Edinburgh. Section A, Mathematical and Physical SciencesVolume
151Number
4Publisher
Cambridge University Press
Pages
1135-1170
Publication identifier
Metadata
Show full item recordAuthor(s)
Bellettini, GiovanniDipartimento di Matematica e Informatica [Siena]
Chambolle, Antonin

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kholmatov, Shokhrukh
University of Vienna [Vienna]
Abstract (EN)
Under suitable assumptions on the family of anisotropies, we prove the existence of a weak global 1/(n+1)-Hölder continuous in time mean curvature flow with mobilities of a bounded anisotropic partition in any dimension using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We improve the Hölder exponent to 1/2 in the case of partitions with the same anisotropy and the same mobility and provide a weak comparison result in this setting for a weak anisotropic mean curvature flow of a partition and an anisotropic mean curvature two-phase flow.Subjects / Keywords
mean curvature flow; partitions; minimizing movements; forcing; anisotropy; mobilityRelated items
Showing items related by title and author.
-
Chambolle, Antonin; de Gennaro, Daniele; Morini, Massimiliano (2022) Document de travail / Working paper
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin (2004) Article accepté pour publication ou publié
-
Cancès, Clément; Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard (2019) Article accepté pour publication ou publié