• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Nonparametric estimation for interacting particle systems : McKean-Vlasov models

Della Maestra, Laëtitia; Hoffmann, Marc (2021), Nonparametric estimation for interacting particle systems : McKean-Vlasov models, Probability Theory and Related Fields, p. 50. 10.1007/s00440-021-01044-6

View/Open
2011.03762.pdf (517.0Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Probability Theory and Related Fields
Publisher
Springer
Pages
50
Publication identifier
10.1007/s00440-021-01044-6
Metadata
Show full item record
Author(s)
Della Maestra, Laëtitia
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Hoffmann, Marc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a system of N interacting particles, governed by transport and diffusion, that converges in a mean-field limit to the solution of a McKean-Vlasov equation. From the observation of a trajectory of the system over a fixed time horizon, we investigate nonparametric estimation of the solution of the associated nonlinear Fokker-Planck equation, together with the drift term that controls the interactions, in a large population limit N→∞. We build data-driven kernel estimators and establish oracle inequalities, following Lepski's principle. Our results are based on a new Bernstein concentration inequality in McKean-Vlasov models for the empirical measure around its mean, possibly of independent interest. We obtain adaptive estimators over anisotropic H\"older smoothness classes built upon the solution map of the Fokker-Planck equation, and prove their optimality in a minimax sense. In the specific case of the Vlasov model, we derive an estimator of the interaction potential and establish its consistency.
Subjects / Keywords
Nonparametric estimation; Statistics and PDE; Interacting particle systems; McKean–Vlasov models; Oracle inequalities; Goldenshluger–Lepski method; Anisotropic estimation

Related items

Showing items related by title and author.

  • Thumbnail
    Some results on the McKean–Vlasov optimal control and mean field games : Limit theorems, dynamic programming principle and numerical approximations 
    Djete, Fabrice (2020-12-16) Thèse
  • Thumbnail
    Functional convex order for the scaled McKean-Vlasov processes 
    Liu, Yating; Pagès, Gilles (2021) Document de travail / Working paper
  • Thumbnail
    Monotone convex order for the McKean-Vlasov processes 
    Liu, Yating; Pagès, Gilles (2021) Document de travail / Working paper
  • Thumbnail
    A McKean-Vlasov approach to distributed electricity generation development 
    Aïd, René; Basei, M.; Pham, H. (2019) Article accepté pour publication ou publié
  • Thumbnail
    Nonparametric estimation of the division rate of a size-structured population 
    Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo