Nonparametric estimation for interacting particle systems : McKean-Vlasov models
Della Maestra, Laëtitia; Hoffmann, Marc (2021), Nonparametric estimation for interacting particle systems : McKean-Vlasov models, Probability Theory and Related Fields, p. 50. 10.1007/s00440-021-01044-6
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Probability Theory and Related FieldsPublisher
Springer
Pages
50
Publication identifier
Metadata
Show full item recordAuthor(s)
Della Maestra, LaëtitiaCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Hoffmann, Marc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a system of N interacting particles, governed by transport and diffusion, that converges in a mean-field limit to the solution of a McKean-Vlasov equation. From the observation of a trajectory of the system over a fixed time horizon, we investigate nonparametric estimation of the solution of the associated nonlinear Fokker-Planck equation, together with the drift term that controls the interactions, in a large population limit N→∞. We build data-driven kernel estimators and establish oracle inequalities, following Lepski's principle. Our results are based on a new Bernstein concentration inequality in McKean-Vlasov models for the empirical measure around its mean, possibly of independent interest. We obtain adaptive estimators over anisotropic H\"older smoothness classes built upon the solution map of the Fokker-Planck equation, and prove their optimality in a minimax sense. In the specific case of the Vlasov model, we derive an estimator of the interaction potential and establish its consistency.Subjects / Keywords
Nonparametric estimation; Statistics and PDE; Interacting particle systems; McKean–Vlasov models; Oracle inequalities; Goldenshluger–Lepski method; Anisotropic estimationRelated items
Showing items related by title and author.
-
Liu, Yating; Pagès, Gilles (2021) Document de travail / Working paper
-
Liu, Yating; Pagès, Gilles (2021) Document de travail / Working paper
-
Aïd, René; Basei, M.; Pham, H. (2019) Article accepté pour publication ou publié
-
Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2012) Article accepté pour publication ou publié