• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Individual and population approaches for calibrating division rates in population dynamics: Application to the bacterial cell cycle

Doumic, Marie; Hoffmann, Marc (2023), Individual and population approaches for calibrating division rates in population dynamics: Application to the bacterial cell cycle, in Weizhu Bao, Peter A Markowich, Benoit Perthame, and Eitan Tadmor, Lecture Notes Series, Volume 40, Modeling and Simulation for Collective Dynamics, World Scientific : Singapore, p. 1-81. 10.1142/9789811266140_0001

View/Open
ims9x6-ch1_CellDiv_MH15.pdf (1.502Mb)
Type
Chapitre d'ouvrage
Date
2023
Book title
Lecture Notes Series, Volume 40, Modeling and Simulation for Collective Dynamics
Book author
Weizhu Bao, Peter A Markowich, Benoit Perthame, and Eitan Tadmor
Publisher
World Scientific
Published in
Singapore
ISBN
978-981-126-613-3
Pages
1-81
Publication identifier
10.1142/9789811266140_0001
Metadata
Show full item record
Author(s)
Doumic, Marie
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Hoffmann, Marc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Modelling, analysing and inferring triggering mechanisms in population reproduction is fundamental in many biological applications. It is also an active and growing research domain in mathematical biology. In this chapter, we review the main results developed over the last decade for the estimation of the division rate in growing and dividing populations in a steady environment. These methods combine tools borrowed from PDE's and stochastic processes, with a certain view that emerges from mathematical statistics. A focus on the application to the bacterial cell division cycle provides a concrete presentation, and may help the reader to identify major new challenges in the field.
Subjects / Keywords
Long-term dynamics; Asymptotic behaviour; Incremental model; Adder model; Renewal process; Renewal equation; Growth-fragmentation process; Gowth-fragmentation equation; Kernel density estimation; Nonparametric statistical inference; Inverse problem; Bacterial growth; Cell division cycle; Eigenvalue problem; Malthusian parameter

Related items

Showing items related by title and author.

  • Thumbnail
    Nonparametric estimation of the division rate of a size-structured population 
    Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2012) Article accepté pour publication ou publié
  • Thumbnail
    Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism 
    Doumic, Marie; Robert, Jérôme; Aymerich, Stéphane; Krell, Nathalie; Hoffmann, Marc; Robert, Lydia (2014) Article accepté pour publication ou publié
  • Thumbnail
    Testing for high frequency features in a noisy signal 
    Mezache, Mathieu; Hoffmann, Marc; Rezaei, Human; Doumic, Marie (2019-08) Document de travail / Working paper
  • Thumbnail
    The distribution of AIDS over the population in Africa. Hypothesis building from individual answers to a Demographic and Health Survey with an application to Côte d'Ivoire 
    Cogneau, Denis; Grimm, Michael (2002) Document de travail / Working paper
  • Thumbnail
    Blockwise SVD with error in the operator and application to blind deconvolution 
    Vareschi, Thomas; Picard, Dominique; Hoffmann, Marc; Delattre, Sylvain (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo