• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Korn and Poincaré-Korn inequalities for functions with a small jump set

Cagnetti, Filippo; Chambolle, Antonin; Scardia, Lucia (2022), Korn and Poincaré-Korn inequalities for functions with a small jump set, Mathematische Annalen, 383, p. 1179–1216. 10.1007/s00208-021-02210-w

View/Open
Korn_review.pdf (424.1Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Mathematische Annalen
Volume
383
Publisher
Springer
Pages
1179–1216
Publication identifier
10.1007/s00208-021-02210-w
Metadata
Show full item record
Author(s)
Cagnetti, Filippo
Department of Mathematics [Brighton, Sussex]
Chambolle, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Scardia, Lucia
School of Mathematical and Computer Sciences [MATHEMATICS DEPARTMENT OF HERIOT-WATT UNIVERSITY]
Abstract (EN)
In this paper we prove a regularity and rigidity result for displacements in GSBDp, for every p>1 and any dimension n≥2. We show that a displacement in GSBDp with a small jump set coincides with a W1,p function, up to a small set whose perimeter and volume are controlled by the size of the jump. This generalises to higher dimension a result of Conti, Focardi and Iurlano. A consequence of this is that such displacements satisfy, up to a small set, Poincaré-Korn and Korn inequalities. As an application, we deduce an approximation result which implies the existence of the approximate gradient for displacements in GSBDp.
Subjects / Keywords
Elasticity; Fractures; Griffith energy; functions with bounded deformation; fine properties

Related items

Showing items related by title and author.

  • Thumbnail
    An Extension Result for Generalised Special Functions of Bounded Deformation 
    Cagnetti, Filippo; Chambolle, Antonin; Perugini, Matteo; Scardia, Lucia (2020) Article accepté pour publication ou publié
  • Thumbnail
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
  • Thumbnail
    An approximation result for special functions with bounded deformation 
    Chambolle, Antonin (2004) Article accepté pour publication ou publié
  • Thumbnail
    Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow 
    Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
  • Thumbnail
    Anisotropic and crystalline mean curvature flow of mean-convex sets 
    Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo