
Mullins-Sekerka as the Wasserstein flow of the perimeter
Chambolle, Antonin; Laux, Tim (2021), Mullins-Sekerka as the Wasserstein flow of the perimeter, Proceedings of the American Mathematical Society, 149, 7, p. 2943-2956. 10.1090/proc/15401
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Proceedings of the American Mathematical SocietyVolume
149Number
7Publisher
American Mathematical Society
Pages
2943-2956
Publication identifier
Metadata
Show full item recordAuthor(s)
Chambolle, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laux, Tim
Hausdorff Center for Mathematics [HCM]
Abstract (EN)
We prove the convergence of an implicit time discretization for the Mullins-Sekerka equation proposed in [F. Otto, Arch. Rational Mech. Anal. 141 (1998) 63-103]. Our simple argument shows that the limit satisfies the equation in a distributional sense as well as an optimal energy-dissipation relation. The proof combines simple arguments from optimal transport, gradient flows & minimizing movements, and basic geometric measure theory.Subjects / Keywords
Gradient flows, Wasserstein distance, sets of finite perimeter, Mullins-Sekerka, free boundary problems, Hele-Shaw cellRelated items
Showing items related by title and author.
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Bellettini, Giovanni; Chambolle, Antonin; Kholmatov, Shokhrukh (2021) Article accepté pour publication ou publié
-
Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Chambolle, Antonin; Belahmidi, Abdelmounim (2005) Article accepté pour publication ou publié