hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Bazgan, Cristina | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Cazals, Pierre | |
dc.contributor.author | Chlebíková, Janka | |
dc.date.accessioned | 2021-11-26T13:51:03Z | |
dc.date.available | 2021-11-26T13:51:03Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22264 | |
dc.language.iso | en | en |
dc.subject | Graph | en |
dc.subject.ddc | 004 | en |
dc.title | How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | A graph is k-degree-anonymous if for each vertex there are at least k−1 other vertices of the same degree in the graph. Min Anonymous-Edge-Rotation asks for a given graph G and a positive integer k to find a minimum number of edge rotations that transform G into a k-degree-anonymous graph. In this paper, we establish sufficient conditions for an input graph and k ensuring that a solution for the problem exists. We also prove that the Min Anonymous-Edge-Rotation problem is NP-hard even for k=n/3 , where n is the order of a graph. On the positive side, we argue that under some constraints on the number of edges in a graph and k, Min Anonymous-Edge-Rotation is polynomial-time 2-approximable. Moreover, we show that the problem is solvable in polynomial time for any graph when k=n and for trees when k=θ(n) . | en |
dc.identifier.citationpages | 242-256 | en |
dc.relation.ispartoftitle | Combinatorial Optimization and Applications | en |
dc.relation.ispartofeditor | Wu, Weili | |
dc.relation.ispartofeditor | Zhang, Zhongnan | |
dc.relation.ispartofpublname | Springer | en |
dc.relation.ispartofpages | 834 | en |
dc.relation.ispartofurl | 10.1007/978-3-030-64843-5 | en |
dc.subject.ddclabel | Informatique générale | en |
dc.relation.ispartofisbn | 978-3-030-64842-8 | en |
dc.relation.conftitle | 14th International Conference, COCOA 2020 | en |
dc.relation.confdate | 2020-12 | |
dc.relation.confcity | Dallas | en |
dc.relation.confcountry | United States | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1007/978-3-030-64843-5_17 | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2021-11-26T13:47:59Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |