
How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations
Bazgan, Cristina; Cazals, Pierre; Chlebíková, Janka (2020), How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations, in Wu, Weili; Zhang, Zhongnan, Combinatorial Optimization and Applications, Springer, p. 242-256. 10.1007/978-3-030-64843-5_17
View/ Open
Type
Communication / ConférenceDate
2020Conference title
14th International Conference, COCOA 2020Conference date
2020-12Conference city
DallasConference country
United StatesBook title
Combinatorial Optimization and ApplicationsBook author
Wu, Weili; Zhang, ZhongnanPublisher
Springer
ISBN
978-3-030-64842-8
Number of pages
834Pages
242-256
Publication identifier
Metadata
Show full item recordAuthor(s)
Bazgan, CristinaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Cazals, Pierre
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chlebíková, Janka
Abstract (EN)
A graph is k-degree-anonymous if for each vertex there are at least k−1 other vertices of the same degree in the graph. Min Anonymous-Edge-Rotation asks for a given graph G and a positive integer k to find a minimum number of edge rotations that transform G into a k-degree-anonymous graph. In this paper, we establish sufficient conditions for an input graph and k ensuring that a solution for the problem exists. We also prove that the Min Anonymous-Edge-Rotation problem is NP-hard even for k=n/3 , where n is the order of a graph. On the positive side, we argue that under some constraints on the number of edges in a graph and k, Min Anonymous-Edge-Rotation is polynomial-time 2-approximable. Moreover, we show that the problem is solvable in polynomial time for any graph when k=n and for trees when k=θ(n) .Subjects / Keywords
GraphRelated items
Showing items related by title and author.
-
Bazgan, Cristina; Cazals, Pierre; Chlebíková, Janka (2021) Article accepté pour publication ou publié
-
Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément (2020) Article accepté pour publication ou publié
-
Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2015) Communication / Conférence
-
Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2018) Article accepté pour publication ou publié
-
Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément; Pontoizeau, Thomas (2019) Article accepté pour publication ou publié