• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations

Bazgan, Cristina; Cazals, Pierre; Chlebíková, Janka (2020), How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations, in Wu, Weili; Zhang, Zhongnan, Combinatorial Optimization and Applications, Springer, p. 242-256. 10.1007/978-3-030-64843-5_17

View/Open
HowToGetADegree-Anonymous.pdf (370.7Kb)
Type
Communication / Conférence
Date
2020
Conference title
14th International Conference, COCOA 2020
Conference date
2020-12
Conference city
Dallas
Conference country
United States
Book title
Combinatorial Optimization and Applications
Book author
Wu, Weili; Zhang, Zhongnan
Publisher
Springer
ISBN
978-3-030-64842-8
Number of pages
834
Pages
242-256
Publication identifier
10.1007/978-3-030-64843-5_17
Metadata
Show full item record
Author(s)
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Cazals, Pierre
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chlebíková, Janka
Abstract (EN)
A graph is k-degree-anonymous if for each vertex there are at least k−1 other vertices of the same degree in the graph. Min Anonymous-Edge-Rotation asks for a given graph G and a positive integer k to find a minimum number of edge rotations that transform G into a k-degree-anonymous graph. In this paper, we establish sufficient conditions for an input graph and k ensuring that a solution for the problem exists. We also prove that the Min Anonymous-Edge-Rotation problem is NP-hard even for k=n/3 , where n is the order of a graph. On the positive side, we argue that under some constraints on the number of edges in a graph and k, Min Anonymous-Edge-Rotation is polynomial-time 2-approximable. Moreover, we show that the problem is solvable in polynomial time for any graph when k=n and for trees when k=θ(n) .
Subjects / Keywords
Graph

Related items

Showing items related by title and author.

  • Thumbnail
    Degree-anonymization using edge rotations 
    Bazgan, Cristina; Cazals, Pierre; Chlebíková, Janka (2021) Article accepté pour publication ou publié
  • Thumbnail
    Graphs without a partition into two proportionally dense subgraphs 
    Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément (2020) Article accepté pour publication ou publié
  • Thumbnail
    New Insight into 2-Community Structures in Graphs with Applications in Social Networks 
    Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2015) Communication / Conférence
  • Thumbnail
    Structural and algorithmic properties of 2-community structures 
    Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2018) Article accepté pour publication ou publié
  • Thumbnail
    Proportionally dense subgraph of maximum size: Complexity and approximation 
    Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément; Pontoizeau, Thomas (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo