
Dirac-Coulomb operators with general charge distribution. II. The lowest eigenvalue
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021), Dirac-Coulomb operators with general charge distribution. II. The lowest eigenvalue, Proceedings of the London Mathematical Society, 123, 4, p. 345-383. 10.1112/plms.12396
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Proceedings of the London Mathematical SocietyVolume
123Number
4Publisher
Wiley
Pages
345-383
Publication identifier
Metadata
Show full item recordAuthor(s)
Esteban, Maria J.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Consider the Coulomb potential −μ∗|x|−1 generated by a non-negative finite measure μ. It is well known that the lowest eigenvalue of the corresponding Schrödinger operator −Δ/2−μ∗|x|−1 is minimized, at fixed mass μ(R3)=ν, when μ is proportional to a delta. In this paper we investigate the conjecture that the same holds for the Dirac operator −iα⋅∇+β−μ∗|x|−1. In a previous work on the subject we proved that this operator is self-adjoint when μ has no atom of mass larger than or equal to 1, and that its eigenvalues are given by min-max formulas. Here we consider the critical mass ν1, below which the lowest eigenvalue does not dive into the lower continuum spectrum for all μ≥0 with μ(R3)<ν1. We first show that ν1 is related to the best constant in a new scaling-invariant Hardy-type inequality. Our main result is that for all 0≤ν<ν1, there exists an optimal measure μ≥0 giving the lowest possible eigenvalue at fixed mass μ(R3)=ν, which concentrates on a compact set of Lebesgue measure zero. The last property is shown using a new unique continuation principle for Dirac operators. The existence proof is based on the concentration-compactness principle.Subjects / Keywords
Dirac-Coulomb operators; min-max formulas; variational methods; eigenvalue optimization; spectral theory; concentration-compactness principle; unique continuation principleRelated items
Showing items related by title and author.
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2022) Document de travail / Working paper
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2019) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié