• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

One-exact approximate Pareto sets

Herzel, Arne; Bazgan, Cristina; Ruzika, Stefan; Thielen, Clemens; Vanderpooten, Daniel (2019), One-exact approximate Pareto sets, Journal of Global Optimization, 80, p. 87–115. 10.1007/s10898-020-00951-7

View/Open
One-exactApproximate.pdf (607.0Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Journal of Global Optimization
Volume
80
Publisher
Springer
Pages
87–115
Publication identifier
10.1007/s10898-020-00951-7
Metadata
Show full item record
Author(s)
Herzel, Arne
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ruzika, Stefan
Thielen, Clemens
Vanderpooten, Daniel
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Papadimitriou and Yannakakis (Proceedings of the 41st annual IEEE symposium on the Foundations of Computer Science (FOCS), pp 86–92, 2000) show that the polynomial-time solvability of a certain auxiliary problem determines the class of multiobjective optimization problems that admit a polynomial-time computable (1+ε,…,1+ε)-approximate Pareto set (also called an ε-Pareto set). Similarly, in this article, we characterize the class of multiobjective optimization problems having a polynomial-time computable approximate ε-Pareto set that is exact in one objective by the efficient solvability of an appropriate auxiliary problem. This class includes important problems such as multiobjective shortest path and spanning tree, and the approximation guarantee we provide is, in general, best possible. Furthermore, for biobjective optimization problems from this class, we provide an algorithm that computes a one-exact ε-Pareto set of cardinality at most twice the cardinality of a smallest such set and show that this factor of 2 is best possible. For three or more objective functions, however, we prove that no constant-factor approximation on the cardinality of the set can be obtained efficiently.
Subjects / Keywords
Multiobjective optimization; Approximation algorithm; Approximate Paretoset; scalarization

Related items

Showing items related by title and author.

  • Thumbnail
    Approximate Pareto sets of minimal size for multi-objective optimization problems 
    Bazgan, Cristina; Jamain, Florian; Vanderpooten, Daniel (2015) Article accepté pour publication ou publié
  • Thumbnail
    An FPTAS for a General Class of Parametric Optimization Problems 
    Bazgan, Cristina; Herzel, Arne; Ruzika, Stefan; Thielen, Clemens; Vanderpooten, Daniel (2019) Communication / Conférence
  • Thumbnail
    Approximation de taille minimale de l'ensemble de Pareto de problèmes multicritères 
    Jamain, Florian; Bazgan, Cristina; Vanderpooten, Daniel (2013) Communication / Conférence
  • Thumbnail
    On Approximate Kernels of Minimal Size for Bicriteria Problems 
    Jamain, Florian; Bazgan, Cristina; Vanderpooten, Daniel (2013) Communication / Conférence
  • Thumbnail
    Critical edges for the assignment problem : complexity and exact resolution 
    Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo