Show simple item record

hal.structure.identifierDepartment of Mathematics [Burnaby] [SFU]
dc.contributor.authorHermon, Jonathan
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorSalez, Justin
HAL ID: 2772
dc.date.accessioned2021-11-26T10:14:12Z
dc.date.available2021-11-26T10:14:12Z
dc.date.issued2021
dc.identifier.issn1050-5164
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22257
dc.language.isoenen
dc.subjectentropy dissipationen
dc.subjectmodified logarithmic Sobolev inequalitiesen
dc.subjectZero-range dynamicsen
dc.subject.ddc519en
dc.titleEntropy dissipation estimates for inhomogeneous zero-range processesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIntroduced by Lu and Yau (Comm. Math. Phys. 156 (1993) 399–433), the martingale decomposition method is a powerful recursive strategy that has produced sharp log-Sobolev inequalities for homogeneous particle systems. However, the intractability of certain covariance terms has so far precluded applications to heterogeneous models. Here we demonstrate that the existence of an appropriate coupling can be exploited to bypass this limitation effortlessly. Our main result is a dimension-free modified log-Sobolev inequality for zero-range processes on the complete graph, under the only requirement that all rate increments lie in a compact subset of (0,∞). This settles an open problem raised by Caputo and Posta (Probab. Theory Related Fields 139 (2007) 65–87) and reiterated by Caputo, Dai Pra and Posta (Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 734–753). We believe that our approach is simple enough to be applicable to many systems.en
dc.relation.isversionofjnlnameAnnals of Applied Probability
dc.relation.isversionofjnlvol31en
dc.relation.isversionofjnlissue5en
dc.relation.isversionofjnldate2021-10
dc.relation.isversionofjnlpages2275-2283en
dc.relation.isversionofdoi10.1214/20-AAP1646en
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statisticsen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2021-11-26T10:09:00Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record