• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Entropy dissipation estimates for inhomogeneous zero-range processes

Hermon, Jonathan; Salez, Justin (2021), Entropy dissipation estimates for inhomogeneous zero-range processes, Annals of Applied Probability, 31, 5, p. 2275-2283. 10.1214/20-AAP1646

View/Open
163792110813038.pdf (143.2Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Annals of Applied Probability
Volume
31
Number
5
Publisher
Institute of Mathematical Statistics
Pages
2275-2283
Publication identifier
10.1214/20-AAP1646
Metadata
Show full item record
Author(s)
Hermon, Jonathan
Department of Mathematics [Burnaby] [SFU]
Salez, Justin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Introduced by Lu and Yau (Comm. Math. Phys. 156 (1993) 399–433), the martingale decomposition method is a powerful recursive strategy that has produced sharp log-Sobolev inequalities for homogeneous particle systems. However, the intractability of certain covariance terms has so far precluded applications to heterogeneous models. Here we demonstrate that the existence of an appropriate coupling can be exploited to bypass this limitation effortlessly. Our main result is a dimension-free modified log-Sobolev inequality for zero-range processes on the complete graph, under the only requirement that all rate increments lie in a compact subset of (0,∞). This settles an open problem raised by Caputo and Posta (Probab. Theory Related Fields 139 (2007) 65–87) and reiterated by Caputo, Dai Pra and Posta (Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 734–753). We believe that our approach is simple enough to be applicable to many systems.
Subjects / Keywords
entropy dissipation; modified logarithmic Sobolev inequalities; Zero-range dynamics

Related items

Showing items related by title and author.

  • Thumbnail
    Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes 
    Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic limit for a zero-range process in the Sierpinski gasket 
    Jara, Milton Article accepté pour publication ou publié
  • Thumbnail
    Density fluctuations for a zero-range process on the percolation cluster 
    Gonçalves, Patricia; Jara, Milton (2009) Article accepté pour publication ou publié
  • Thumbnail
    The mean-field Zero-Range process with unbounded monotone rates: mixing time, cutoff, and Poincaré constant 
    Tran, Hong-Quan (2022) Document de travail / Working paper
  • Thumbnail
    The interchange process on high-dimensional products 
    Hermon, Jonathan; Salez, Justin (2021-02) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo