• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Computation of optimal transport with finite volumes

Natale, Andrea; Todeschi, Gabriele (2021), Computation of optimal transport with finite volumes, ESAIM: Mathematical Modelling and Numerical Analysis, 55, 5, p. 1847-1871. 10.1051/m2an/2021041

View/Open
m2an210008.pdf (1.421Mb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
ESAIM: Mathematical Modelling and Numerical Analysis
Volume
55
Number
5
Publisher
EDP Sciences
Pages
1847-1871
Publication identifier
10.1051/m2an/2021041
Metadata
Show full item record
Author(s)
Natale, Andrea
Reliable numerical approximations of dissipative systems [RAPSODI ]
Todeschi, Gabriele
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We construct Two-Point Flux Approximation (TPFA) finite volume schemes to solve the quadratic optimal transport problem in its dynamic form, namely the problem originally introduced by Benamou and Brenier. We show numerically that these type of discretizations are prone to form instabilities in their more natural implementation, and we propose a variation based on nested meshes in order to overcome these issues. Despite the lack of strict convexity of the problem, we also derive quantitative estimates on the convergence of the method, at least for the discrete potential and the discrete cost. Finally, we introduce a strategy based on the barrier method to solve the discrete optimization problem.
Subjects / Keywords
Finite volumes; Dynamical optimal transport; Barrier method

Related items

Showing items related by title and author.

  • Thumbnail
    A mixed finite element discretization of dynamical optimal transport 
    Natale, Andrea; Todeschi, Gabriele (2022) Article accepté pour publication ou publié
  • Thumbnail
    Finite volume approximation of optimal transport and Wasserstein gradient flows 
    Todeschi, Gabriele (2021-12-13) Thèse
  • Thumbnail
    TPFA Finite Volume Approximation of Wasserstein Gradient Flows 
    Natale, Andrea; Todeschi, Gabriele (2020) Communication / Conférence
  • Thumbnail
    Efficient preconditioners for solving dynamical optimal transport via interior point methods 
    Facca, Enrico; Todeschi, Gabriele; Natale, Andrea; Benzi, Michele (2022) Document de travail / Working paper
  • Thumbnail
    From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows 
    Gallouët, Thomas; Natale, Andrea; Todeschi, Gabriele (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo