• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Universality for critical KCM: finite number of stable directions

Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2021), Universality for critical KCM: finite number of stable directions, Annals of Probability, 49, 5, p. 2141-2174. 10.1214/20-AOP1500

View/Open
1910.06782.pdf (346.5Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Annals of Probability
Volume
49
Number
5
Publisher
Institute of Mathematical Statistics
Pages
2141-2174
Publication identifier
10.1214/20-AOP1500
Metadata
Show full item record
Author(s)
Hartarsky, Ivailo cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Martinelli, Fabio
Dipartimento di Matematica [Roma TRE]
Toninelli, Cristina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper we consider kinetically constrained models (KCM) on Z2 with general update families U. For U belonging to the so-called ``critical class'' our focus is on the divergence of the infection time of the origin for the equilibrium process as the density of the facilitating sites vanishes. In a recent paper Mar\^ech\'e and two of the present authors proved that if U has an infinite number of ``stable directions'', then on a doubly logarithmic scale the above divergence is twice the one in the corresponding U-bootstrap percolation. Here we prove instead that, contrary to previous conjectures, in the complementary case the two divergences are the same. In particular, we establish the full universality partition for critical U. The main novel contribution is the identification of the leading mechanism governing the motion of infected critical droplets. It consists of a peculiar hierarchical combination of mesoscopic East-like motions. Even if each path separately depends on the details of U, their combination gives rise to an essentially isotropic motion of the infected critical droplets. In particular, the only surviving information about the detailed structure of U is its difficulty. On a technical level the above mechanism is implemented through a sequence of Poincar\'e inequalities yielding the correct scaling of the infection time.
Subjects / Keywords
Kinetically constrained models; bootstrap percolation; universality; Glauber dynamics; Poincaré inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Universality for critical kinetically constrained models: infinite number of stable directions 
    Hartarsky, Ivailo; Marêché, Laure; Toninelli, Cristina (2020-06) Article accepté pour publication ou publié
  • Thumbnail
    Universality for critical kinetically constrained models: infinite number of stable directions 
    Hartarsky, Ivailo; Marêché, Laure; Toninelli, Cristina (2019) Document de travail / Working paper
  • Thumbnail
    Sharp threshold for the FA-2f kinetically constrained model 
    Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Coalescing and branching simple symmetric exclusion process 
    Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Friedrickson-Andersen model in two dimensions 
    Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo