
Solving hard cut problems via flow-augmentation
Kim, Eun Jung; Kratsch, Stefan; Pilipczuk, Marcin; Wahlström, Magnus (2021), Solving hard cut problems via flow-augmentation, dans Marx, Dániel, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 149-168. 10.1137/1.9781611976465.11
Voir/Ouvrir
Type
Communication / ConférenceDate
2021Titre du colloque
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021Date du colloque
2021-01Titre de l'ouvrage
Proceedings of the 2021 ACM-SIAM Symposium on Discrete AlgorithmsAuteurs de l’ouvrage
Marx, DánielÉditeur
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Isbn
978-1-61197-646-5
Nombre de pages
3041Pages
149-168
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Kim, Eun JungLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kratsch, Stefan
Pilipczuk, Marcin
Wahlström, Magnus
Résumé (EN)
We present a new technique for designing FPT algorithms for graph cut problems in undirected graphs, which we call flow augmentation. Our technique is applicable to problems that can be phrased as a search for an (edge) (s,t)-cut of cardinality at most k in an undirected graph G with designated terminals s and t. More precisely, we consider problems where an (unknown) solution is a set Z⊆E(G) of size at most k such that (1) in G−Z, s and t are in distinct connected components, (2) every edge of Z connects two distinct connected components of G−Z, and (3) if we define the set Zs,t⊆Z as these edges e∈Z for which there exists an (s,t)-path Pe with E(Pe)∩Z={e}, then Zs,t separates s from t. We prove that in this scenario one can in randomized time kO(1)(|V(G)|+|E(G)|) add a number of edges to the graph so that with 2−O(klogk) probability no added edge connects two components of G−Z and Zs,t becomes a minimum cut between s and t. We apply our method to obtain a randomized FPT algorithm for a notorious "hard nut" graph cut problem we call Coupled Min-Cut. This problem emerges out of the study of FPT algorithms for Min CSP problems, and was unamenable to other techniques for parameterized algorithms in graph cut problems, such as Randomized Contractions, Treewidth Reduction or Shadow Removal. To demonstrate the power of the approach, we consider more generally Min SAT(Γ), parameterized by the solution cost. We show that every problem Min SAT(Γ) is either (1) FPT, (2) W[1]-hard, or (3) able to express the soft constraint (u→v), and thereby also the min-cut problem in directed graphs. All the W[1]-hard cases were known or immediate, and the main new result is an FPT algorithm for a generalization of Coupled Min-Cut.Mots-clés
hard cut problemsPublications associées
Affichage des éléments liés par titre et auteur.
-
Kim, Eun Jung; Milanic, Martin; Monnot, Jérôme; Picouleau, Christophe (2022) Article accepté pour publication ou publié
-
Kim, Eun Jung; Ordyniak, Sebastian; Szeider, Stefan (2014) Communication / Conférence
-
Gaspers, Serge; Kim, Eun Jung; Ordyniak, Sebastian; Saurabh, Saket; Szeider, Stefan (2012) Communication / Conférence
-
Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017) Article accepté pour publication ou publié
-
Kim, Eun Jung; Oum, Sang-il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2018) Article accepté pour publication ou publié