• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Solving hard cut problems via flow-augmentation

Kim, Eun Jung; Kratsch, Stefan; Pilipczuk, Marcin; Wahlström, Magnus (2021), Solving hard cut problems via flow-augmentation, in Marx, Dániel, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 149-168. 10.1137/1.9781611976465.11

View/Open
1.9781611976465.11.pdf (897.6Kb)
Type
Communication / Conférence
Date
2021
Conference title
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
Conference date
2021-01
Book title
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
Book author
Marx, Dániel
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-1-61197-646-5
Number of pages
3041
Pages
149-168
Publication identifier
10.1137/1.9781611976465.11
Metadata
Show full item record
Author(s)
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kratsch, Stefan
Pilipczuk, Marcin
Wahlström, Magnus
Abstract (EN)
We present a new technique for designing FPT algorithms for graph cut problems in undirected graphs, which we call flow augmentation. Our technique is applicable to problems that can be phrased as a search for an (edge) (s,t)-cut of cardinality at most k in an undirected graph G with designated terminals s and t. More precisely, we consider problems where an (unknown) solution is a set Z⊆E(G) of size at most k such that (1) in G−Z, s and t are in distinct connected components, (2) every edge of Z connects two distinct connected components of G−Z, and (3) if we define the set Zs,t⊆Z as these edges e∈Z for which there exists an (s,t)-path Pe with E(Pe)∩Z={e}, then Zs,t separates s from t. We prove that in this scenario one can in randomized time kO(1)(|V(G)|+|E(G)|) add a number of edges to the graph so that with 2−O(klogk) probability no added edge connects two components of G−Z and Zs,t becomes a minimum cut between s and t. We apply our method to obtain a randomized FPT algorithm for a notorious "hard nut" graph cut problem we call Coupled Min-Cut. This problem emerges out of the study of FPT algorithms for Min CSP problems, and was unamenable to other techniques for parameterized algorithms in graph cut problems, such as Randomized Contractions, Treewidth Reduction or Shadow Removal. To demonstrate the power of the approach, we consider more generally Min SAT(Γ), parameterized by the solution cost. We show that every problem Min SAT(Γ) is either (1) FPT, (2) W[1]-hard, or (3) able to express the soft constraint (u→v), and thereby also the min-cut problem in directed graphs. All the W[1]-hard cases were known or immediate, and the main new result is an FPT algorithm for a generalization of Coupled Min-Cut.
Subjects / Keywords
hard cut problems

Related items

Showing items related by title and author.

  • Thumbnail
    Complexity and algorithms for constant diameter augmentation problems 
    Kim, Eun Jung; Milanic, Martin; Monnot, Jérôme; Picouleau, Christophe (2022) Article accepté pour publication ou publié
  • Thumbnail
    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation 
    Kim, Eun Jung; Ordyniak, Sebastian; Szeider, Stefan (2014) Communication / Conférence
  • Thumbnail
    Don't Be Strict in Local Search! 
    Gaspers, Serge; Kim, Eun Jung; Ordyniak, Sebastian; Saurabh, Saket; Szeider, Stefan (2012) Communication / Conférence
  • Thumbnail
    Parameterized algorithms for min-max multiway cut and list digraph homomorphism 
    Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017) Article accepté pour publication ou publié
  • Thumbnail
    An FPT 2-Approximation for Tree-Cut Decomposition 
    Kim, Eun Jung; Oum, Sang-il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo