• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Twin-width II: small classes

Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021), Twin-width II: small classes, SODA '21: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, 2021-01, online, United States

Voir/Ouvrir
2006.09877.pdf (796.0Kb)
Type
Communication / Conférence
Date
2021
Titre du colloque
SODA '21: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
Date du colloque
2021-01
Ville du colloque
online
Pays du colloque
United States
Éditeur
ACM - Association for Computing Machinery
Ville d’édition
New York, NY
Isbn
978-1-61197-646-5
Pages
1977–1996
Métadonnées
Afficher la notice complète
Auteur(s)
Bonnet, Edouard
Geniet, Colin
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Thomassé, Stéphan
Watrigant, Rémi
Résumé (EN)
The twin-width of a graph G is the minimum integer d such that G has a d-contraction sequence, that is, a sequence of |V(G)|−1 iterated vertex identifications for which the overall maximum number of red edges incident to a single vertex is at most d, where a red edge appears between two sets of identified vertices if they are not homogeneous in G. We show that if a graph admits a d-contraction sequence, then it also has a linear-arity tree of f(d)-contractions, for some function f. First this permits to show that every bounded twin-width class is small, i.e., has at most n!cn graphs labeled by [n], for some constant c. This unifies and extends the same result for bounded treewidth graphs [Beineke and Pippert, JCT '69], proper subclasses of permutations graphs [Marcus and Tardos, JCTA '04], and proper minor-free classes [Norine et al., JCTB '06]. The second consequence is an O(logn)-adjacency labeling scheme for bounded twin-width graphs, confirming several cases of the implicit graph conjecture. We then explore the "small conjecture" that, conversely, every small hereditary class has bounded twin-width. Inspired by sorting networks of logarithmic depth, we show that logΘ(loglogd)n-subdivisions of Kn (a small class when d is constant) have twin-width at most d. We obtain a rather sharp converse with a surprisingly direct proof: the logd+1n-subdivision of Kn has twin-width at least d. Secondly graphs with bounded stack or queue number (also small classes) have bounded twin-width. Thirdly we show that cubic expanders obtained by iterated random 2-lifts from K4~[Bilu and Linial, Combinatorica '06] have bounded twin-width, too. We suggest a promising connection between the small conjecture and group theory. Finally we define a robust notion of sparse twin-width and discuss how it compares with other sparse classes.
Mots-clés
Twin-width; small classes; expanders; clique subdivisions; sparsity

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Twin-width III: Max Independent Set, Min Dominating Set, and Coloring 
    Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
  • Vignette de prévisualisation
    Twin-width and polynomial kernels 
    Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
  • Vignette de prévisualisation
    Twin-width I: tractable FO model checking 
    Bonnet, Edouard; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2020) Communication / Conférence
  • Vignette de prévisualisation
    Twin-width VI: the lens of contraction sequences 
    Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan (2022) Communication / Conférence
  • Vignette de prévisualisation
    EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs 
    Bonamy, Marthe; Bonnet, Edouard; Bousquet, Nicolas; Charbit, Pierre; Giannopoulos, Panos; Kim, Eun Jung; Rzążewski, P.; Sikora, Florian; Thomassé, S. (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo