• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Detecting crisis event with Gradient Boosting Decision Trees

Benhamou, Éric; Ohana, Jean; Saltiel, David; Guez, Beatrice (2021), Detecting crisis event with Gradient Boosting Decision Trees. https://basepub.dauphine.psl.eu/handle/123456789/22206

View/Open
Detecting_crisis.pdf (391.9Kb)
Type
Document de travail / Working paper
Date
2021
Series title
Preprint Lamsade
Published in
Paris
Metadata
Show full item record
Author(s)
Benhamou, Éric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ohana, Jean
Saltiel, David
Guez, Beatrice
Abstract (EN)
Financial markets allocation is a difficult task as the method needs to dramatically change its behavior when facing very rare black swan events like crises that shift market regime. In order to address this challenge, we present a gradient boosting decision trees (GBDT) approach to predict large price drops in equity indexes from a set of 150 technical, fundamental and macroeconomic features. We report an improved accuracy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. We show that this model has a strong predictive power. We train the model from 2000 to 2014, a period where various crises have been observed and use a validation period of 3 years to find hyperparameters. The fitted model timely forecasts the Covid crisis giving us a planning method for early detection of potential future crises.
Subjects / Keywords
Decision trees

Related items

Showing items related by title and author.

  • Thumbnail
    Regime change detection with GBDT and Shapley values 
    Benhamou, Éric; Ohana, Jean; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
  • Thumbnail
    Is the Covid equity bubble rational? A machine learning answer 
    Ohana, Jean Jacques; Benhamou, Éric; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
  • Thumbnail
    House allocation with randomly generated preference lists 
    Benhamou, Eric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal (2021) Communication / Conférence
  • Thumbnail
    Shapley values for LightGBM model applied to regime detection 
    Ohana, J; Ohana, S; Benhamou, Éric; Saltiel, D; Guez, B (2021) Document de travail / Working paper
  • Thumbnail
    Deep Reinforcement Learning (DRL) for portfolio allocation 
    Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo