
Anisotropic tubular neighborhoods of sets
Chambolle, Antonin; Lussardi, Luca; Villa, Elena (2021), Anisotropic tubular neighborhoods of sets, Mathematische Zeitschrift, 299, p. 1257–1274. 10.1007/s00209-021-02715-9
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Mathematische ZeitschriftVolume
299Publisher
Springer
Pages
1257–1274
Publication identifier
Metadata
Show full item recordAuthor(s)
Chambolle, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Lussardi, Luca
Dipartimento di Scienze Matematiche
Villa, Elena
Dipartimento di Matematica "Federico Enriques"
Abstract (EN)
Let E ⊂ R^N be a compact set and C ⊂ R^N be a convex body with 0 ∈ int C. We prove that the topological boundary of the anisotropic enlargement E + rC is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function V_E(r) := |E + rC| proving a formula for the right and the left derivatives at any r > 0 which implies that V E is of class C^1 up to a countable set completely characterized. Moreover, some properties on the second derivative of V_E are proved.Subjects / Keywords
Rectifiability; anisotropic outer Minkowski content; viscosity solutionsRelated items
Showing items related by title and author.
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Chambolle, Antonin; Belahmidi, Abdelmounim (2005) Article accepté pour publication ou publié
-
Bellettini, Giovanni; Chambolle, Antonin; Kholmatov, Shokhrukh (2021) Article accepté pour publication ou publié
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin; Caselles, Vincent; Alter, François (2005) Article accepté pour publication ou publié