
Convergence dynamics of Generative Adversarial Networks: the dual metric flows
Turinici, Gabriel (2021), Convergence dynamics of Generative Adversarial Networks: the dual metric flows, dans Alberto Del BimboRita CucchiaraStan SclaroffGiovanni Maria FarinellaTao MeiMarco BertiniHugo Jair EscalanteRoberto Vezzani, Pattern Recognition. ICPR International Workshops and Challenges, Springer : Berlin Heidelberg, p. 619-634. 10.1007/978-3-030-68763-2_47
Voir/Ouvrir
Type
Communication / ConférenceDate
2021Titre du colloque
ICPR: International Conference on Pattern RecognitionDate du colloque
2021-01Ville du colloque
Milan (Virtual Event)Pays du colloque
ItalyTitre de l'ouvrage
Pattern Recognition. ICPR International Workshops and ChallengesAuteurs de l’ouvrage
Alberto Del BimboRita CucchiaraStan SclaroffGiovanni Maria FarinellaTao MeiMarco BertiniHugo Jair EscalanteRoberto VezzaniÉditeur
Springer
Ville d’édition
Berlin Heidelberg
Isbn
978-3-030-68762-5
Nombre de pages
741Pages
619-634
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Fitting neural networks often resorts to stochastic (or similar) gradient descent which is a noise-tolerant (and efficient) resolution of a gradient descent dynamics. It outputs a sequence of networks parameters, which sequence evolves during the training steps. The gradient descent is the limit, when the learning rate is small and the batch size is infinite, of this set of increasingly optimal network parameters obtained during training. In this contribution, we investigate instead the convergence in the Generative Adversarial Networks used in machine learning. We study the limit of small learning rate, and show that, similar to single network training, the GAN learning dynamics tend, for vanishing learning rate to some limit dynamics. This leads us to consider evolution equations in metric spaces (which is the natural framework for evolving probability laws)that we call dual flows. We give formal definitions of solutions and prove the convergence. The theory is then applied to specific instances of GANs and we discuss how this insight helps understand and mitigate the mode collapse.Mots-clés
GAN; Metric flow; Generative networkPublications associées
Affichage des éléments liés par titre et auteur.
-
Brugière, Pierre; Turinici, Gabriel (2022) Document de travail / Working paper
-
Turinici, Gabriel (2022-09) Communication / Conférence
-
Turinici, Gabriel (2017) Article accepté pour publication ou publié
-
Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
-
Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud'Homme, Christophe; Turinici, Gabriel (2012) Article accepté pour publication ou publié