• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Convergence dynamics of Generative Adversarial Networks: the dual metric flows

Turinici, Gabriel (2021), Convergence dynamics of Generative Adversarial Networks: the dual metric flows, in Alberto Del BimboRita CucchiaraStan SclaroffGiovanni Maria FarinellaTao MeiMarco BertiniHugo Jair EscalanteRoberto Vezzani, Pattern Recognition. ICPR International Workshops and Challenges, Springer : Berlin Heidelberg, p. 619-634. 10.1007/978-3-030-68763-2_47

View/Open
2012.10410.pdf (481.1Kb)
Type
Communication / Conférence
Date
2021
Conference title
ICPR: International Conference on Pattern Recognition
Conference date
2021-01
Conference city
Milan (Virtual Event)
Conference country
Italy
Book title
Pattern Recognition. ICPR International Workshops and Challenges
Book author
Alberto Del BimboRita CucchiaraStan SclaroffGiovanni Maria FarinellaTao MeiMarco BertiniHugo Jair EscalanteRoberto Vezzani
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-030-68762-5
Number of pages
741
Pages
619-634
Publication identifier
10.1007/978-3-030-68763-2_47
Metadata
Show full item record
Author(s)
Turinici, Gabriel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Fitting neural networks often resorts to stochastic (or similar) gradient descent which is a noise-tolerant (and efficient) resolution of a gradient descent dynamics. It outputs a sequence of networks parameters, which sequence evolves during the training steps. The gradient descent is the limit, when the learning rate is small and the batch size is infinite, of this set of increasingly optimal network parameters obtained during training. In this contribution, we investigate instead the convergence in the Generative Adversarial Networks used in machine learning. We study the limit of small learning rate, and show that, similar to single network training, the GAN learning dynamics tend, for vanishing learning rate to some limit dynamics. This leads us to consider evolution equations in metric spaces (which is the natural framework for evolving probability laws)that we call dual flows. We give formal definitions of solutions and prove the convergence. The theory is then applied to specific instances of GANs and we discuss how this insight helps understand and mitigate the mode collapse.
Subjects / Keywords
GAN; Metric flow; Generative network

Related items

Showing items related by title and author.

  • Thumbnail
    Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder 
    Brugière, Pierre; Turinici, Gabriel (2022) Document de travail / Working paper
  • Thumbnail
    Algorithms that get old : the case of generative deep neural networks 
    Turinici, Gabriel (2022-09) Communication / Conférence
  • Thumbnail
    Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes 
    Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    A priori convergence of the Greedy algorithm for the parametrized reduced basis method 
    Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud'Homme, Christophe; Turinici, Gabriel (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo