• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient descent

Ayadi, Imen; Turinici, Gabriel (2021), Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient descent, 25th International Conference on Pattern Recognition (ICPR 2020), IEEE - Institute of Electrical and Electronics Engineers : Piscataway, NJ, p. 1-16. 10.1109/ICPR48806.2021.9412831

View/Open
turinici_ayadi2020-rk-adaptive-sgd.pdf (449.1Kb)
Type
Communication / Conférence
Date
2021
Conference title
25th International Conference on Pattern Recognition (ICPR)
Conference date
2021-01
Conference city
Milan
Conference country
Italy
Book title
25th International Conference on Pattern Recognition (ICPR 2020)
Publisher
IEEE - Institute of Electrical and Electronics Engineers
Published in
Piscataway, NJ
Pages
1-16
Publication identifier
10.1109/ICPR48806.2021.9412831
Metadata
Show full item record
Author(s)
Ayadi, Imen
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Turinici, Gabriel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The minimization of the loss function is of paramount importance in deep neural networks. On the other hand, many popular optimization algorithms have been shown to correspond to some evolution equation of gradient flow type. Inspired by the numerical schemes used for general evolution equations we introduce a second order stochastic Runge Kutta method and show that it yields a consistent procedure for the minimization of the loss function. In addition it can be coupled, in an adaptive framework, with a Stochastic Gradient Descent (SGD) to adjust automatically the learning rate of the SGD, without the need of any additional information on the Hessian of the loss functional. The adaptive SGD, called SGD-G2, is successfully tested on standard datasets.
Subjects / Keywords
SGD; stochastic gradient descent; Machine Learning; adaptive stochastic gradient; deep learning optimization; neural networks optimization

Related items

Showing items related by title and author.

  • Thumbnail
    The convergence of the Stochastic Gradient Descent (SGD) : a self-contained proof 
    Turinici, Gabriel (2021) Document de travail / Working paper
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes 
    Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser 
    Hurault, Samuel; Chambolle, Antonin; Leclaire, Arthur; Papadakis, Nicolas (2023) Document de travail / Working paper
  • Thumbnail
    Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes 
    Chambolle, Antonin; Delplancke, Claire; Ehrhardt, Matthias; Schönlieb, Carola-Bibiane; Tang, Junqi (2023) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo