• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat

Komorowski, Tomasz; Olla, Stefano (2020), Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat, Journal of Functional Analysis, 279, 12. 10.1016/j.jfa.2020.108764

View/Open
ko-kin-boundary-submit.pdf (511.3Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Journal of Functional Analysis
Volume
279
Number
12
Publisher
Elsevier
Publication identifier
10.1016/j.jfa.2020.108764
Metadata
Show full item record
Author(s)
Komorowski, Tomasz
Institut of Mathematics - Polish Academy of Sciences [PAN]
Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider an infinite chain of coupled harmonic oscillators with a Langevin thermostat attached at the origin and energy, momentum and volume conserving noise that models the collisions between atoms. The noise is rarefied in the limit, that corresponds to the hypothesis that in the macroscopic unit time only a finite number of collisions takes place (Boltzmann-Grad limit). We prove that, after the hyperbolic space-time rescaling, the Wigner distribution, describing the energy density of phonons in space-frequency domain, converges to a positive energy density function W (t, y, k) that evolves according to a linear kinetic equation, with the interface condition at y = 0 that corresponds to reflection, transmission and absorption of phonons. The paper extends the results of [3], where a thermostatted harmonic chain (with no inter-particle scattering) has been considered.
Subjects / Keywords
Harmonic chains with stochastic noise; Wigner functions; Linear kinetic equation with interface; Duhamel formula

Related items

Showing items related by title and author.

  • Thumbnail
    High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat 
    Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya; Spohn, Herbert (2020) Article accepté pour publication ou publié
  • Thumbnail
    Superdiffusion of Energy in a Chain of Harmonic Oscillators with Noise 
    Jara, Milton; Komorowski, Tomasz; Olla, Stefano (2015) Article accepté pour publication ou publié
  • Thumbnail
    Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities 
    Olla, Stefano; Simon, Marielle; Komorowski, Tomasz (2018) Article accepté pour publication ou publié
  • Thumbnail
    Fractional diffusion limit for a kinetic equation with an interface 
    Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya (2020) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion limit for a kinetic equation with a thermostatted interface 
    Basile, Giada; Komorowski, Tomasz; Olla, Stefano (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo