
Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition
Bernou, Armand; Carrapatoso Nascimento Junior, Kleber; Mischler, Stéphane; Tristani, Isabelle (2022), Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, p. 46. 10.4171/AIHPC/44
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéairePublisher
Elsevier
Published in
Paris
Pages
46
Publication identifier
Metadata
Show full item recordAuthor(s)
Bernou, ArmandLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Carrapatoso Nascimento Junior, Kleber
Centre de Mathématiques Laurent Schwartz [CMLS]
Mischler, Stéphane
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tristani, Isabelle
Département de Mathématiques et Applications - ENS Paris [DMA]
Abstract (EN)
We establish the convergence to the equilibrium for various linear collisional kinetic equations (including linearized Boltzmann and Landau equations) with physical local conservation laws in bounded domains with general Maxwell boundary condition. Our proof consists in establishing an hypocoercivity result for the associated operator, in other words, we exhibit a convenient Hilbert norm for which the associated operator is coercive in the orthogonal of the global conservation laws. Our approach allows us to treat general domains with all type of boundary conditions in a unified framework. In particular, our result includes the case of vanishing accommodation coefficient and thus the specific case of the specular reflection boundary condition.Subjects / Keywords
Kinetic equationsRelated items
Showing items related by title and author.
-
Mischler, Stéphane (2010) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien (2016) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; MOUHOT, CLEMENT; Schmeiser, Christian (2022) Document de travail / Working paper