• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition

Bernou, Armand; Carrapatoso Nascimento Junior, Kleber; Mischler, Stéphane; Tristani, Isabelle (2022), Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, p. 46. 10.4171/AIHPC/44

View/Open
2102.07709.pdf (625.4Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaire
Publisher
Elsevier
Published in
Paris
Pages
46
Publication identifier
10.4171/AIHPC/44
Metadata
Show full item record
Author(s)
Bernou, Armand
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Carrapatoso Nascimento Junior, Kleber
Centre de Mathématiques Laurent Schwartz [CMLS]
Mischler, Stéphane
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tristani, Isabelle
Département de Mathématiques et Applications - ENS Paris [DMA]
Abstract (EN)
We establish the convergence to the equilibrium for various linear collisional kinetic equations (including linearized Boltzmann and Landau equations) with physical local conservation laws in bounded domains with general Maxwell boundary condition. Our proof consists in establishing an hypocoercivity result for the associated operator, in other words, we exhibit a convenient Hilbert norm for which the associated operator is coercive in the orthogonal of the global conservation laws. Our approach allows us to treat general domains with all type of boundary conditions in a unified framework. In particular, our result includes the case of vanishing accommodation coefficient and thus the specific case of the specular reflection boundary condition.
Subjects / Keywords
Kinetic equations

Related items

Showing items related by title and author.

  • Thumbnail
    Kinetic equations with Maxwell boundary conditions 
    Mischler, Stéphane (2010) Article accepté pour publication ou publié
  • Thumbnail
    Landau equation for very soft and Coulomb potentials near Maxwellians 
    Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation 
    Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
  • Thumbnail
    Cauchy problem and exponential stability for the inhomogeneous Landau equation 
    Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien (2016) Article accepté pour publication ou publié
  • Thumbnail
    Special macroscopic modes and hypocoercivity 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; MOUHOT, CLEMENT; Schmeiser, Christian (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo