• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Optimal linearization of vector fields on the torus in non-analytic Gevrey classes

Bounemoura, Abed (2020), Optimal linearization of vector fields on the torus in non-analytic Gevrey classes. https://basepub.dauphine.psl.eu/handle/123456789/22156

View/Open
opti.pdf (284.2Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03008322
Date
2020
Series title
Cahier de recherche du CEREMADE
Published in
Paris
Pages
30
Metadata
Show full item record
Author(s)
Bounemoura, Abed
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study linear and non-linear small divisors problems in analytic and non-analytic regularity. We observe that the Bruno arithmetic condition, which is usually attached to non-linear analytic problems, can also be characterized as the optimal condition to solve the linear problem in some fixed non quasi-analytic class. Based on this observation, it is natural to conjecture that the optimal arithmetic condition for the linear problem is also optimal for non-linear small divisors problems in any reasonable non quasi-analytic classes. Our main result proves this conjecture in a representative non-linear problem, which is the linearization of vector fields on the torus, in the most representative non quasi-analytic class, which is the Gevrey class. The proof follows Moser's argument of approximation by analytic functions, and uses in an essential way works of Popov, Rüssmann and Pöschel..

Related items

Showing items related by title and author.

  • Thumbnail
    KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition 
    Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié
  • Thumbnail
    Some remarks on the optimality of the Bruno-Rüssmann condition 
    Bounemoura, Abed; Bounemoura, Abed (2018) Document de travail / Working paper
  • Thumbnail
    Generic Fast Diffusion for a Class of Non-Convex Hamiltonians with Two Degrees of Freedom 
    Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
  • Thumbnail
    Nekhoroshev estimates for steep real-analytic elliptic equilibrium points 
    Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2019) Article accepté pour publication ou publié
  • Thumbnail
    Double exponential stability for generic real-analytic elliptic equilibrium points 
    Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2015) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo