• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Mixed Nash Equilibria in the Adversarial Examples Game

Meunier, Laurent; Scetbon, Meyer; Pinot, Rafael; Atif, Jamal; Chevaleyre, Yann (2021), Mixed Nash Equilibria in the Adversarial Examples Game. https://basepub.dauphine.psl.eu/handle/123456789/22145

View/Open
2102.06905.pdf (732.3Kb)
Type
Document de travail / Working paper
Date
2021
Series title
Preprint Lamsade
Published in
Paris
Metadata
Show full item record
Author(s)
Meunier, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Scetbon, Meyer
Centre de Recherche en Économie et Statistique [CREST]
Pinot, Rafael
Ecole Polytechnique Federale de Lausanne [EPFL]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chevaleyre, Yann
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This paper tackles the problem of adversarial examples from a game theoretic point of view. We study the open question of the existence of mixed Nash equilibria in the zero-sum game formed by the attacker and the classifier. While previous works usually allow only one player to use randomized strategies, we show the necessity of considering randomization for both the classifier and the attacker. We demonstrate that this game has no duality gap, meaning that it always admits approximate Nash equilibria. We also provide the first optimization algorithms to learn a mixture of classifiers that approximately realizes the value of this game, \emph{i.e.} procedures to build an optimally robust randomized classifier.
Subjects / Keywords
game theory

Related items

Showing items related by title and author.

  • Thumbnail
    Randomization matters How to defend against strong adversarial attacks 
    Pinot, Rafaël; Ettedgui, Raphaël; Rizk, Geovani; Chevaleyre, Yann; Atif, Jamal (2020) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    A unified view on differential privacy and robustness to adversarial examples 
    Pinot, Rafaël; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Equitable and Optimal Transport with Multiple Agents 
    Scetbon, Meyer; Meunier, Laurent; Atif, Jamal; Cuturi, Marco (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo