An intermediate targets method for time parallelization in optimal control
hal.structure.identifier | Division of Applied Mathematics [DAM] | |
hal.structure.identifier | Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)] | |
dc.contributor.author | Maday, Yvon | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Salomon, Julien
HAL ID: 738224 | |
hal.structure.identifier | Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)] | |
dc.contributor.author | Riahi, Kamel | |
dc.date.accessioned | 2021-11-02T10:03:52Z | |
dc.date.available | 2021-11-02T10:03:52Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22143 | |
dc.language.iso | en | en |
dc.subject | Euler-Lagrange | en |
dc.subject.ddc | 515 | en |
dc.title | An intermediate targets method for time parallelization in optimal control | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | In this paper, we present a method that enables to solve in parallel the Euler-Lagrange system associated with the optimal control of a parabolic equation. Our approach is based on an iterative update of a sequence of intermediate targets and gives rise independent sub-problems that can be solved in parallel. Numerical experiments show the efficiency of our method. | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.conftitle | Control and Optimization of PDEs | en |
dc.relation.confdate | 2011-10 | |
dc.relation.confcity | Graz | en |
dc.relation.confcountry | Austria | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2021-11-02T09:33:46Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |